Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5216–5220 | Cite as

Design, synthesis, and characterization of bulk metallic glass composite with enhanced plasticity

  • G. Y. SunEmail author
  • G. Chen
  • G. L. Chen
Article

Abstract

A Zr-based bulk metallic glass (BMG) in situ composite with a designed composition of Zr60Ti14.67Nb5.33Cu5.56Ni4.44Be10 was prepared based on both modifying alloy composition and controlling solidification process. The composite contains high volume fraction of coarsen bcc β-Zr(Ti, Nb) solid solution. The β phase particles are short rod-like, worm-like, and nearly spherical in morphology rather than typical dendrite structure, their volume fraction and average diameter were estimated to be about 55% and 20 μm, respectively. The composite displays a large fracture strain up to 22.3% under uniaxial compression at room temperature. The coarse β phase and its high volume fraction were thought to be responsible for the excellent plastic deformability of the present composite.

Keywords

High Volume Fraction Bulk Metallic Glass Ductile Phase Present Composite Multiple Shear Band 

Notes

Acknowledgements

This work was supported by Natural Science Research Projects of The Education Department of Henan Province China (Grant Nos. 2008A430010 and 2009B430007) and R & D start-up projects of high-level talents of North China University of Water Resources and Electric Power (Grant No. 200709).

References

  1. 1.
    Liu YH, Wang G, Wang RJ, Zhao DQ, Pan MX, Wang WH (2007) Science 315:1385CrossRefGoogle Scholar
  2. 2.
    Schroers J, Johnson WL (2004) Phys Rev Lett 93:255506CrossRefGoogle Scholar
  3. 3.
    Hofmann DC, Suh JY, Wiest A, Gang D, Lind ML, Demetriou MD, Johnson WL (2008) Nature 451:1085CrossRefGoogle Scholar
  4. 4.
    Guo H, Yan PF, Wang YB, Tan J, Zhang ZF, Sui ML, Ma E (2007) Nat Mater 6:735CrossRefGoogle Scholar
  5. 5.
    Yim HC, Johnson WL (1997) Appl Phys Lett 71:3808CrossRefGoogle Scholar
  6. 6.
    Hays CC, Kim CP, Johnson WL (2000) Phys Rev Lett 84:2901CrossRefGoogle Scholar
  7. 7.
    Fan C, Inoue A (2000) Appl Phys Lett 77:46CrossRefGoogle Scholar
  8. 8.
    Kuhn U, Eckert J, Mattern N, Schultz L (2002) Appl Phys Lett 80:2478CrossRefGoogle Scholar
  9. 9.
    Ma H, Xu J, Ma E (2003) Appl Phys Lett 83:2793CrossRefGoogle Scholar
  10. 10.
    Qiao JW, Wang S, Zhang Y, Liaw PK, Chen GL (2009) Appl Phys Lett 94:151905CrossRefGoogle Scholar
  11. 11.
    Chen G, Bei H, Cao Y, Gali A, Liu CT, George EP (2009) Appl Phys Lett 95:081908CrossRefGoogle Scholar
  12. 12.
    Eckert J, Kuhn U, Mattern N, He G, Gebert A (2002) Intermetallics 10:1183CrossRefGoogle Scholar
  13. 13.
    Lee SY, Kim CP, Almer JD, Lienert U, Ustundag E, Johnson WL (2007) J Mater Res 22:538CrossRefGoogle Scholar
  14. 14.
    Sun GY, Chen G, Liu CT, Chen GL (2006) Scr Mater 55:375CrossRefGoogle Scholar
  15. 15.
    Sun GY, Chen G, Chen GL (2007) Intermetallics 15:632CrossRefGoogle Scholar
  16. 16.
    Eckert J, He G, Das J, Löser W (2003) Mater Trans 44:1999CrossRefGoogle Scholar
  17. 17.
    Szuecs F, Kim CP, Johnson WL (2001) Acta Mater 49:1507CrossRefGoogle Scholar
  18. 18.
    Kim CP (2001) Doctoral degree dissertation, California Institute of TechnologyGoogle Scholar
  19. 19.
    Das J, Löser W, Roy SK, Schultz L (2003) Appl Phys Lett 82:4690CrossRefGoogle Scholar
  20. 20.
    Sun GY, Chen G, Chen GL (2007) Mater Sci Forum 539–543:1943CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Mechanical EngineeringNorth China University of Water Conservancy and Electric PowerZhengzhouChina
  2. 2.Joint Laboratory of Nanostructured Materials and TechnologyNanjing University of Science and TechnologyNanjingChina
  3. 3.State Key Laboratory for Advanced Metals and MaterialsUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations