Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5140–5152 | Cite as

Gamma rays interaction with bismuth borate glasses doped by transition metal ions

  • F. H. ElBatal
  • M. A. MarzoukEmail author
  • A. M. Abdel ghany
Article

Abstract

Ultraviolet, visible, and infrared spectroscopic measurements have been employed to investigate undoped binary bismuth borate glass (60 mol% Bi2O3, 40 mol% B2O3) and doped samples with 0.2% 3d transition metal oxides in order to obtain information about the role of all the constituents oxides including the dopants on the measured properties. The undoped sample shows strong extended UV-near visible absorption bands which are attributed to both trace iron impurities from raw materials used for glass preparation and Bi3+ ions. The TM-samples show the same strong UV-near visible absorption as the undoped sample beside characteristic visible bands because of TM ions. The prepared samples show obvious shielding behavior toward the effect of successive gamma irradiation especially in the visible region. The infrared absorption spectra of the prepared samples show characteristic bands related to the sharing of triangular and tetrahedral borate groups together with Bi–O groups. The IR spectra are slightly affected by gamma irradiation indicating the stability of network forming units while the modifier, OH and water bands show obvious changes in their intensities.

Keywords

Gamma Irradiation Bi2O3 Undoped Sample Visible Band Visible Absorption Spectrum 

References

  1. 1.
    Janakirama–Rao BHV (1962) J Amer Ceram Soc 45(11):555Google Scholar
  2. 2.
    Bishay A, Maghrabi C (1969) Phys Chem Glasses 10(1):1Google Scholar
  3. 3.
    Vankirk SE, Martin SW (1992) J Amer Ceram Soc 75(4):1028Google Scholar
  4. 4.
    Ford N, Holland D (1987) Glass Technol 28(2):106Google Scholar
  5. 5.
    Gaudagenino E, Dallgna R (1996) Glass Technol 37(3):76Google Scholar
  6. 6.
    Dimitriev Y, Michailova V (1990) J Mater Sci Lett 9:1251Google Scholar
  7. 7.
    Dimitriev Y, Michailova V (1992) Proc XVI Intern Cong on Glass Madrid 3:293Google Scholar
  8. 8.
    Sugimito N (2002) J Amer Ceram Soc 85:1083Google Scholar
  9. 9.
    Donald IW, McMillan PW (1978) J Mater Sci 13:2301. doi: https://doi.org/10.1007/BF00808042 Google Scholar
  10. 10.
    Dumbaugh WH (1986) Phys Chem Glasses 27:119Google Scholar
  11. 11.
    Dumbaugh WH, Lapp JC (1992) J Amer Ceram Soc 75:2315Google Scholar
  12. 12.
    ElBatal FH, Azooz MA, Ezz ElDin FM (2002) Phys Chem Glasses 43:260Google Scholar
  13. 13.
    El-Shaarawy MG, ElBatal FH (2002) Phys Chem Glasses 43:247–253Google Scholar
  14. 14.
    Baia L, Stefan R, Kiefer W, Popp J, Simon S (2002) J Non-Cryst Solids 303:379Google Scholar
  15. 15.
    Baia L, Stefan R, Popp J, Simon S, Kiefer W (2003) J Non-Cryst Solids 324:109Google Scholar
  16. 16.
    Culea E, Popp L, Simon V, Neumann M, Brat L (2004) J Non-Cryst Solids 337:62Google Scholar
  17. 17.
    ElBatal FH (2007) Nucl Instr and Meth Phys Res (B) 254:243Google Scholar
  18. 18.
    Mogus-Milankov A, Santic A, Licna V, Day DE (2005) J Non-Cryst Solids 351:3235Google Scholar
  19. 19.
    Witkowska A, Rybicki J, Dicicco A (2002) In: Proceedings of 19th International Glass Congress, Edinburgh 43c, p 124Google Scholar
  20. 20.
    Stehle C, Vira C, Hogan D, Feller S, Affatigato MH (1998) Phys Chem Glasses 39:83Google Scholar
  21. 21.
    Bamford CR (1977) Color generation and control in glass, glass science and technology. Elsevier Publishing Company, Amsterdam, p 55Google Scholar
  22. 22.
    Elliot SR (1984) Physics of amorphous materials. Longman, New YorkGoogle Scholar
  23. 23.
    Shelby JE (1997) Introduction to glass science and technology. Royal Society of Chemistry, CambridgeGoogle Scholar
  24. 24.
    ElBatal FH, Azooz MA, Marzouk SY (2007) Opt Mater 29:1456Google Scholar
  25. 25.
    ElBatal FH, Azooz MA, Marzouk SY, Selim MS (2007) Physica B 398:126Google Scholar
  26. 26.
    ElBatal FH, Azooz MA, Marzouk SY (2006) Phys Chem Glasses European J Glass Sci Technol (B) 47:588Google Scholar
  27. 27.
    Marzouk SY, ElBatal FH (2006) Nucl Instr Meth Phys Res (B) 248:90Google Scholar
  28. 28.
    ElBatal FH, Hamdy YM, Marzouk SY (2009) J Non-Cryst Solids 355:2439Google Scholar
  29. 29.
    Smedskjaer MM, Yue Y (2009) Appl Suf Sci 256:202Google Scholar
  30. 30.
    Bishay A (1970) J Non-Cryst Solids 3:54Google Scholar
  31. 31.
    Friebele EJ (1991). In: Uhlmann DR, Kreidl NJ (eds) Optical properties of glass. American Ceramic Society, Westerville, p 205Google Scholar
  32. 32.
    Sigel GH, Ginther RJ (1968) Glass Technol 9:66Google Scholar
  33. 33.
    Cook L, Mader KH (1982) J Amer Ceram Soc 65:109Google Scholar
  34. 34.
    Duffy JA, Ingram MD (1970) Phys Chem Glasses 52:3752Google Scholar
  35. 35.
    Duffy JA, Ingram MD (1974) Phys Chem Glasses 15:34Google Scholar
  36. 36.
    Duffy JA (1997) Phys Chem Glasses 38:289Google Scholar
  37. 37.
    Seeber W, Ehrt D (1999) Glastech Ber Glass Sci Technol 72:295Google Scholar
  38. 38.
    Natura U, Ehrt D, Neumann K (2001) Glastech Ber Glass Sci Technol 74:23Google Scholar
  39. 39.
    Moncke D, Ehrt D (2004) Opt Mater 25:425Google Scholar
  40. 40.
    ElBatal FH, ElKheshen AA, Azooz MA, AboNaf SM (2008) Opt Mater 30:88Google Scholar
  41. 41.
    ElBatal FH, Azooz MA, ElKheshen AA (2009) Tran Ind Ceram Soc 68:81Google Scholar
  42. 42.
    ElBatal FH, Marzouk SY (2009) J Mater Sci 44:3061. doi: https://doi.org/10.1007/s10853-009-3406-y Google Scholar
  43. 43.
    ElBatal FH, Ouis MA, Morsi RM, Marzouk SY (2010) J Non-Cryst Solid 356:46Google Scholar
  44. 44.
    Paul A (1972) Phys Chem Glasses 13(5):144Google Scholar
  45. 45.
    Parke S, Webb RS (1973) J Phys Chem Solid 38:85Google Scholar
  46. 46.
    Reisfeld R, Boehm L (1974) J Non-Cryst Solid 16:83Google Scholar
  47. 47.
    Sanz O, Aro-Poinatwski EH, Gonzzlo J, Fernandez Navarro JM (2006) J Non-Cryst Solid 352:761Google Scholar
  48. 48.
    ElBatal FH, Marzouk SY, Nada N, Desouky SM (2007) Physica B 391:88Google Scholar
  49. 49.
    ElBatal FH, Marzouk SY, Nada N, Desouky SM (2010) Philosph Mag 90(6):675Google Scholar
  50. 50.
    Roul BK (1999) Superconductivity J 12(2):409Google Scholar
  51. 51.
    Meng X, Qui J, Peng M, Chen D, Zhao Q, Jiang X, Zhu C (2005) Opt Exp 13(5):1628Google Scholar
  52. 52.
    Peng M, Qiu J, Chen D, Meng X, Zhu C (2005) Opt Exp 13(18):6892Google Scholar
  53. 53.
    Suzuki T, Ohishi Y (2006) Appl Phys Lett 88:1912Google Scholar
  54. 54.
    Peng M, Qui J, Chen D, Meng X, Yang I, Jiang X, Zhu C (2004) Optics Lett 29:1998Google Scholar
  55. 55.
    Seo Y, Fujimoto Y (2010) In: Pal BB (ed) Frontiers in guided wave optics and optoelectronics. INTECH, Croatia, pp 105–118Google Scholar
  56. 56.
    Cotton FA, Wilkinson G, Murille CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. John Wiley & Sons Inc., NewYorkGoogle Scholar
  57. 57.
    Shkrob IA, Tadjikov BM, Trifunac AD (2000) J Non-Cryst Solids 262:6Google Scholar
  58. 58.
    Bates T (1962) In: Mackenzie JD (ed) Modern aspects of the vitreous state, vol 2. Butterworths, London, pp 195–254Google Scholar
  59. 59.
    Bamford CR (1962) Phys Chem Glasses 3:189Google Scholar
  60. 60.
    Ravikumar RVSSN, Chandreskhar AV, Ramoorthy L, Reddy BJ, Yamauchi J, Rao PS (2004) J Alloys Comp 364:176Google Scholar
  61. 61.
    Khanna A, Bhatti SS, Singh KJ, Thind KS (1996) Nucl Instr Meth Phys Res (B) 114:217Google Scholar
  62. 62.
    Singh K, Singh H, Khanna A, Kummar R, Nathuram R, Bhatti SS, Sahota HS (2002) Nucl Instr Meth Phys Res (B) 194:1Google Scholar
  63. 63.
    Singh N, Singh KJ, Singh K, Singh H (2004) Nucl Instr Meth Phys Res (B) 225:305Google Scholar
  64. 64.
    El Batal FH, Ezz ElDin FM (2007) Trans Ind Ceram Soc 66:4Google Scholar
  65. 65.
    Plionis AA, Garcia SR, Gonzales ER, Porterfield DR, Peterson DS (2009) J Radional Nucl Chem 282:239Google Scholar
  66. 66.
    Tarte P (1962) Spectrochim Acta 18:467Google Scholar
  67. 67.
    Tarte P (1964) Physics of non-crystalline solids. Elsevier, Amsterdam, p 549Google Scholar
  68. 68.
    Condrate R (1972) Introduction to glass science. Plenum, New York, p 101Google Scholar
  69. 69.
    Gattef EM, Dimitrov VV, Dimitriev YB, Wright AC (1997) In: Wright AC, Feller SA, Hannon AC (eds) Proceedings of second international conference on borate glasses, crystals and melts. Society of Glass Technology, Sheffield, p 246Google Scholar
  70. 70.
    Zheng H, Mackenzie J (1989) J Mater Res 4:911Google Scholar
  71. 71.
    Primak W (1972) J Appl Phys Phys 43:2745Google Scholar
  72. 72.
    Hobbs LW, Sreeam AN, Jesurum CE, Berger BA (1991) Nucl Instr Meth Phys Res (B) 116:18Google Scholar
  73. 73.
    Piao P, Oldham WG, Haller EE (2000) J Non-Cryst Solids 269:61Google Scholar
  74. 74.
    ElBatal HA, Ezz ElDin FM (2001) Arab J Nucl Sci Appl 340:77Google Scholar
  75. 75.
    Baccaro S, Monika SG, Third KS, Singler DP, Cecilli A (2007) Nucl Instr Meth Phys Res (B) 260:316Google Scholar
  76. 76.
    Kamitsos EI (2003) Phys Chem Glasses 44:79Google Scholar
  77. 77.
    Ardelean I, Cora S (2008) J Mater Sci Mater Electron 19:584Google Scholar
  78. 78.
    Pascuta P, Borodi G, Culea E (2009) J Mater Sci Mater Electron 20:360Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • F. H. ElBatal
    • 1
  • M. A. Marzouk
    • 1
    Email author
  • A. M. Abdel ghany
    • 2
  1. 1.Department of Glass ResearchNational Research CenterCairoEgypt
  2. 2.Department of SpectroscopyNational Research CenterCairoEgypt

Personalised recommendations