Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5129–5139 | Cite as

Effect of process parameters on size, shape, and distribution of Sb2O3 nanoparticles

  • Hui Shun Chin
  • Kuan Yew CheongEmail author
  • Khairunisak Abdul Razak
Article

Abstract

Antimony trioxide (Sb2O3) nanoparticles with particle sizes ranging from 2 to 12 nm, spherical in shape, and well-distributed were successfully synthesized by chemical reduction method. The nanoparticles were synthesized in the presence of hydrazine as a reduction agent in ethylene glycol through the reaction between antimony trichloride and sodium hydroxide. Effects of reaction temperature, reaction time, precursor concentration and boiling temperature on the particle size, shape, and distribution of the Sb2O3 nanoparticles were investigated. Morphology of the nanoparticles was examined by transmission electron microscope (TEM). It was revealed that the particle size increased when reaction temperature, reaction time and concentration of precursor were increased. Moreover, the mixture needed to be boiled prior to the addition of hydrazine as a reduction agent, in order to obtain an optimum reduction. X-ray diffraction (XRD) was employed to study the crystallinity and phase of the nanoparticles. The nanoparticles were determined as cubic phase of Sb2O3 (ICDD file no. 00-043-1071) by XRD. Interrelation between UV–vis absorption spectra of the nanoparticles and their particle size were obtained.

Keywords

Diffraction Peak Hydrazine Sb2O3 Fibrous Material Boiling Temperature 

Notes

Acknowledgements

One of the authors (H.S.C) would like to thank USM RU-PRGS grant and USM fellowship for the scholarship and financial support on this project. Another author (K.Y.C) would like to acknowledge the financial support given by Short Term Grant of Universiti Sains Malaysia (6039038).

References

  1. 1.
    Wang D, Zhou Y, Song C, Shao M (2009) J Cryst Growth 311:3948CrossRefGoogle Scholar
  2. 2.
    Ye CH, Wang GY, Kong MG, Zhang LD (2006) J Nanomater 2006:1CrossRefGoogle Scholar
  3. 3.
    Xie XL, Li RKY, Liu QX, Mai YW (2004) Polymer 45:2793CrossRefGoogle Scholar
  4. 4.
    Feng L, Wang J, Liu J, Wang B, Song S (2007) J Compos Mater 41:1487CrossRefGoogle Scholar
  5. 5.
    Laachachi A, Cochez M, Ferriol M, Leroy E, Lopez Cuesta JM, Oget N (2004) Polym Degrad Stab 85:641CrossRefGoogle Scholar
  6. 6.
    Duh B (2002) Polymer 43:3147CrossRefGoogle Scholar
  7. 7.
    Nalin M, Messaddeq Y, Ribeiro SJL, Poulain M, Briois V (2001) J Optoelectron Adv Mater 3:553Google Scholar
  8. 8.
    Sahoo NK, Apparao KVSR (1997) Appl Phys A 63:195Google Scholar
  9. 9.
    Ozawa K, Sakka Y, Amano M (1998) J Mater Res 13:830CrossRefGoogle Scholar
  10. 10.
    Dzimitrowicz DJ, Goodenough JB, Wiseman PJ (1982) Mater Res Bull 17:971CrossRefGoogle Scholar
  11. 11.
    Zhang ZL, Guo L, Wang WD (2001) J Mater Res 16:803CrossRefGoogle Scholar
  12. 12.
    Jha AK, Prasad K (2009) Biochem Eng J 43:303CrossRefGoogle Scholar
  13. 13.
    Chen XY, Huh HS, Lee SW (2008) J Solid State Chem 181:2127CrossRefGoogle Scholar
  14. 14.
    Liu YP, Zhang YH, Zhang MW, Zhang WH, Qian YT, Yang L, Wang CS, Chen ZW (1997) Mater Sci Eng B 49:42CrossRefGoogle Scholar
  15. 15.
    Zeng DW, Zhu BL, Xie CS, Song WL, Wang AH (2004) Mater Sci Eng A 366:332CrossRefGoogle Scholar
  16. 16.
    Zeng DW, Xie CS, Zhu BL, Song WL (2004) Mater Lett 58:312CrossRefGoogle Scholar
  17. 17.
    Xu CH, Shi SQ, Surya C, Woo CH (2007) J Mater Sci 42:9855. doi: https://doi.org/10.1007/s10853-007-1799-z CrossRefGoogle Scholar
  18. 18.
    Qiu KQ, Zhang RL (2006) Vacuum 80:1016CrossRefGoogle Scholar
  19. 19.
    Chin HS, Cheong KY, Abdul Razak K (2010) J Mater Sci 45:5993. doi: https://doi.org/10.1007/s10853-010-4849-x CrossRefGoogle Scholar
  20. 20.
    Wu SH, Chen DH (2003) J Colloid Interface Sci 259:282CrossRefGoogle Scholar
  21. 21.
    Balela MDL (2008) Dissertation, Universiti Sains Malaysia, PenangGoogle Scholar
  22. 22.
    Lee YM, Qin GW, Lee CG, Koo BH, Moon KY, Shimada Y, Kitakami O (2007) Met Mater Int 13:207CrossRefGoogle Scholar
  23. 23.
    Kim KD, Kim HT (2003) Mater Lett 2003:3211CrossRefGoogle Scholar
  24. 24.
    Pattabi M, Saraswathi AB (2007) J New Mater Electrochem Syst 10:43Google Scholar
  25. 25.
    Yang M, Zhang Y, Pang G, Feng S (2007) Eur J Inorg Chem 2007:3841CrossRefGoogle Scholar
  26. 26.
    Segets D, Tomalino LM, Gradl J, Peukert W (2009) J Phys Chem C 113:11995CrossRefGoogle Scholar
  27. 27.
    Zhang G, Roy BK, Allard LF, Cho J (2008) J Am Ceram Soc 91:3875CrossRefGoogle Scholar
  28. 28.
    Chin HS, Cheong KY, Abdul Razak K (2010) J Nanoparticle Res. doi: https://doi.org/10.1007/s11051-010-0169-y CrossRefGoogle Scholar
  29. 29.
    Rautio J, Perämäki P, Honkamo J, Jantunen H (2009) Microchem J 91:272CrossRefGoogle Scholar
  30. 30.
    Chang PR, Yu J, Ma X (2009) Macromol Mater Eng 294:762CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hui Shun Chin
    • 1
  • Kuan Yew Cheong
    • 1
    Email author
  • Khairunisak Abdul Razak
    • 1
  1. 1.Energy Efficient & Sustainable Semiconductor Research Group, School of Materials and Mineral Resources EngineeringUniversiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations