Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5117–5128 | Cite as

Processing of concentrated aqueous fluorapatite suspensions by slip casting

  • María P. AlbanoEmail author
  • Liliana B. Garrido
Article

Abstract

In order to produce stable aqueous fluorapatite (FA) suspensions, its surface reactivity in an aqueous solution having two initial pH values with a concentration of ammonium polyacrylate (NH4PA) was investigated as a function of time. The rheological behaviour of concentrated aqueous FA slips stabilized with NH4PA was studied; besides, the effect of poly(vinyl)alcohol (PVA) addition on the relative viscosity of the suspensions was investigated. The influence of the slip rheology on the microstructure of the resultant green slip cast compacts and their sintering behaviour were determined. Upon the FA introduction in the aqueous solutions, an initial release of F anions located at the surface was found, which was not dependent on the pH and the presence of dispersant. The increase in the initial pH of the solution above 7 and/or the addition of NH4PA markedly reduced the Ca++/H+ exchange reaction rate. As a result, well-stabilized concentrated aqueous suspensions could be obtained at pH close to 9. The minimum viscosity of 40 vol.% slips at pH 8.9 occurred at 0.6 wt% of NH4PA added. The addition of 0.5 wt% PVA to a well-stabilized FA slip caused aggregation of particles by a depletion flocculation mechanism, thereby increasing the slip viscosity. The greater permeability of cakes produced from slips with high viscosity values (0.5 wt% PVA) increased the casting rate. The highest sintered densities were obtained for the compacts prepared from the slips without PVA, due to the denser particle packing achieved in the green bodies.

Keywords

Shear Rate Relative Viscosity Fluorapatite Casting Rate Anionic Polyelectrolyte 

References

  1. 1.
    Weiner S, Wagner HD (1998) Ann Rev Mater Sci 28:271CrossRefGoogle Scholar
  2. 2.
    Vallet-Regí M, González-Calbet JM (2004) Prog Solid State Chem 32:1CrossRefGoogle Scholar
  3. 3.
    Dorozhkin SV (2009) Materials 2:1975CrossRefGoogle Scholar
  4. 4.
    Suchanek W, Yoshimura M (1998) J Mater Res 13:94CrossRefGoogle Scholar
  5. 5.
    Hench LL (1991) J Am Ceram Soc 74(7):1487CrossRefGoogle Scholar
  6. 6.
    Kim H-W, Lee S-Y, Bae C-J, Noh Y-J, Kim H-E, Kim H-M, Ko JS (2003) Biomaterials 24:3277CrossRefGoogle Scholar
  7. 7.
    Kim H-W, Yoon B-H, Koh Y-H, Kim H-E (2006) J Am Ceram Soc 89(8):2466CrossRefGoogle Scholar
  8. 8.
    Chaari K, Bouaziz J, Bouzouita K (2005) J Colloid Interface Sci 285:469CrossRefGoogle Scholar
  9. 9.
    Cesarano J III, Aksay IA, Bleier A (1988) J Am Ceram Soc 71(4):250CrossRefGoogle Scholar
  10. 10.
    Cesarano J III, Aksay IA (1988) J Am Ceram Soc 71(12):1062CrossRefGoogle Scholar
  11. 11.
    Guldberg-Pedersen H, Bergström L (2000) Acta Mater 48:4563CrossRefGoogle Scholar
  12. 12.
    Zhang J-X, Jiang D-L, Tan S-H, Gui L-H, Ruan M-L (2001) J Am Ceram Soc 84(11):2537CrossRefGoogle Scholar
  13. 13.
    Khan AU, Briscoe BJ, Luckham Pf (2000) Colloids Surf A 161:243CrossRefGoogle Scholar
  14. 14.
    Gu Y, Meng G (1999) J Eur Ceram Soc 19:1961CrossRefGoogle Scholar
  15. 15.
    Hampton JHD, Savage B, Drew RAL (2005) J Am Ceram Soc 71(12):1040CrossRefGoogle Scholar
  16. 16.
    Bhatnagar VM (1971) Can J Chem 49:662CrossRefGoogle Scholar
  17. 17.
    Rodenas LG, Palacios JM, Apella MC, Morando PJ, Blesa MA (2005) J Colloid Interface Sci 290:145CrossRefGoogle Scholar
  18. 18.
    Chaïrat C, Schott J, Oelkers EH, Lartigue J-E, Harouiya N (2007) Geochim Cosmochim Acta 71:5901CrossRefGoogle Scholar
  19. 19.
    Chaïrat C, Oelkers EH, Schott J, Lartigue J-E (2007) Geochim Cosmochim Acta 71:5888CrossRefGoogle Scholar
  20. 20.
    Dorozhkin SV (1997) J Cryst Growth 182:133CrossRefGoogle Scholar
  21. 21.
    Berry EE, Baddiel CB (1967) Spectrochim Acta A 23:1781CrossRefGoogle Scholar
  22. 22.
    Albano MP, Garrido LB (1998) J Am Ceram Soc 81(4):837CrossRefGoogle Scholar
  23. 23.
    Albano MP, Garrido LB (2004) Colloids Surf A 248:1CrossRefGoogle Scholar
  24. 24.
    Liu D, Malgham SG (1996) Colloids Surf A 110:37CrossRefGoogle Scholar
  25. 25.
    Albano MP, Garrido LB, Garcia AB (2001) Colloids Surf A 181:69CrossRefGoogle Scholar
  26. 26.
    Tiller FM, Tsai C (1986) J Am Ceram Soc 69(12):882CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Centro de Tecnología de Recursos Minerales y Cerámica (CETMIC)Provincia de Buenos AiresArgentina

Personalised recommendations