Journal of Materials Science

, Volume 46, Issue 22, pp 7068–7073 | Cite as

Electrocatalytic behavior of Ni-based amorphous alloys for hydrogen evolution

  • L. Mihailov
  • T. SpassovEmail author
  • I. Kanazirski
  • I. Tsvetanov
Size Dependent Effects


Ni-based amorphous alloys were synthesized by rapid quenching from the melt, using a planar flow technique. Their amorphous nature and thermal stability were studied by X-ray diffraction and differential scanning calorimetry. The electrocatalytic activity of the as-quenched amorphous alloys with respect to the hydrogen evolution reaction (HER) in alkaline water electrolysis was studied in relation to the alloy composition. The kinetic parameters of the HER were evaluated by cyclic voltammetry and impedance spectroscopy techniques in 6 M KOH at room temperature. The electrocatalytic activity of the amorphous alloys was found to depend on the alloy composition. It was obtained that molybdenum containing amorphous alloys (Ni–Mo–B) showed a superior electrocatalytic activity in the HER compared to Ni–(Nb,Ta)–B and Ni–Si–B, as Ni66.5Mo28.5B5 revealed considerably lower charge transfer resistance and higher exchange current density than Ni63Mo27B10. The results have to be attributed to an improved intrinsic activity of the Ni–Mo–B alloys compared to the other Ni-based glasses.


Amorphous Alloy Electrocatalytic Activity Hydrogen Evolution Reaction Exchange Current Density Alloy Electrode 



The work has been supported by the Bulgarian Scientific Research Fund under grant DO 02-226/2008 and partly by Bulgarian Scientific Research Fund under grant DTK 02-31/2009. The authors thank Dr. Pl. Stefanov (IGIC-BAS) for the XPS analyses.


  1. 1.
    Shan Zh, Liu Y, Chen Zh, Warrender G, Tian J (2008) Int J Hydrogen Energy 33:28CrossRefGoogle Scholar
  2. 2.
    Brunelli K, Dabala M, Frattini R, Sandona G, Calliari I (2001) J Alloys Compd 317–318:595CrossRefGoogle Scholar
  3. 3.
    Brookes HC, Carruthers CM, Doyle B (2005) J Appl Electrochem 35:903CrossRefGoogle Scholar
  4. 4.
    Brunelli K, Dabala M, Frattini R, Magrini M (2003) J Appl Electrochem 33:995CrossRefGoogle Scholar
  5. 5.
    Gebert A, Mattern N, Kuhn U, Eckert J, Schultz L (2007) Intermetallics 15:1183CrossRefGoogle Scholar
  6. 6.
    Metikos-Hukovic M, Jukic A (2000) Electrochim Acta 45:4159CrossRefGoogle Scholar
  7. 7.
    Kirk DW, Thorpe SJ, Suzuki H (1997) Int J Hydrogen Energy 22(5):493CrossRefGoogle Scholar
  8. 8.
    Jukic A, Piljac J, Metikos-Hukovic M (2001) J Mol Catal A 166:293CrossRefGoogle Scholar
  9. 9.
    Losiewicz B, Stepien A, Gierlotka D, Budniok A (1999) Thin Solid Films 349:43CrossRefGoogle Scholar
  10. 10.
    Panek J, Serek A, Budniok A, Rowinski E, Lagiewka E (2003) Int J Hydrogen Energy 28:169CrossRefGoogle Scholar
  11. 11.
    Losiewicz B, Budniok A, Rowinski E, Lagiewka E, Lasia A (2004) J Appl Electrochem 34:507CrossRefGoogle Scholar
  12. 12.
    Kubisztal J, Budniok A, Lasia A (2007) Int J Hydrogen Energy 32:1211CrossRefGoogle Scholar
  13. 13.
    Panek J, Budniok A, Lągiewka E (2007) Rev Adv Mater Sci 15:234Google Scholar
  14. 14.
    Popczyk M (2007) Phys Chem Solid State 8(4):767Google Scholar
  15. 15.
    Rami A, Lasia A (1992) J Appl Electrochem 22:376CrossRefGoogle Scholar
  16. 16.
    Chen L, Lasia A (1992) J Electrochem Soc 139:3458CrossRefGoogle Scholar
  17. 17.
    Tanaka S, Hirose N, Tanaki T (1999) J Electrochem Soc 146:2477CrossRefGoogle Scholar
  18. 18.
    Chen L, Lasia A (1992) J Electrochem Soc 139:3214CrossRefGoogle Scholar
  19. 19.
    Jaksic JM, Vojnovic MV, Krstajic NV (2000) Electrochim Acta 45:4151CrossRefGoogle Scholar
  20. 20.
    Rosalbino F, Borzone G, Angelini E, Raggio R (2003) Electrochim Acta 48:3939CrossRefGoogle Scholar
  21. 21.
    Spirano S, Baricco M, Antonione C, Angelini E, Rosalbino F, Spinelli P (1994) Electrochim Acta 39:1781CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • L. Mihailov
    • 1
  • T. Spassov
    • 1
    Email author
  • I. Kanazirski
    • 2
  • I. Tsvetanov
    • 1
  1. 1.Faculty of ChemistryUniversity of Sofia “St. Kl. Ohridski”SofiaBulgaria
  2. 2.University of Mining and Geology “St. Ivan Rilski”SofiaBulgaria

Personalised recommendations