Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5071–5078 | Cite as

The effects of electronic structure of non-metallic doped TiO2 anode and co-sensitization on the performance of dye-sensitized solar cells

  • Xin Zheng
  • Jingchang ZhangEmail author
  • Lingli Peng
  • Xiuying Yang
  • Weiliang Cao
Article

Abstract

N/TiO2, S/TiO2, and N S/TiO2 nanocrystalline films anode were obtained by doping non-metallic element N and S which could change the LUMO of anode, leading to the easy injection of electron from the excited state of dye molecule to the conduction band of semiconductor, and thus improving the photoelectric conversion efficiency and reducing the impedance of solar cells. The anode films treated by titanium tetrachloride and co-sensitized by P3HT/N719 were also studied. The absorption region of P3HT/N719 covered the entire visible region in the solar cells. The solar cell based on N/TiO2 anode film treated by titanium tetrachloride and P3HT/N719 showed a short-circuit current density of 10.20 mA/cm2, open-circuit voltage of 0.557 V, and photoelectric conversion efficiency of 2.55%.

Keywords

TiO2 Solar Cell Electrochemical Impedance Spectroscopy TiO2 Film Anode Film 

Notes

Acknowledgements

The study was supported by the Key Planned Science and Technology Project of Hainan Province (ZDXM 20100062), the National High Technology Research and Development Program of Hainan under Grant no. 509013, the National High Technology Research and Development Program of China (863 Program) under Grant no. 2006AA03z412, the Scientific Research Project of Hainan Education Department under Grant no. Hj 2010-52, and the Scientific Research Foundation of Graduate School of Beijing University of Chemical and Technology (no. 09Si005).

References

  1. 1.
    O’Regan B, Gräetzel M (1991) Nature 53:737CrossRefGoogle Scholar
  2. 2.
    Green MA, Emery K, King D (2004) Res Appl 12:55Google Scholar
  3. 3.
    McConnell RD (2002) Renew Sustain Energy Rev 6:273CrossRefGoogle Scholar
  4. 4.
    Fernando C, Kumarawadu I, Takahshi K (1999) Sol Energy Mater Sol Cells 58:337CrossRefGoogle Scholar
  5. 5.
    Anpo M, Takeuchi M (2003) J Catal 216:505CrossRefGoogle Scholar
  6. 6.
    Yin S, Yamaki H, Zhang Q, Komatsu M, Wang JS, Tang Q, Saito F, Sato T (2004) Solid State Ion 172:205CrossRefGoogle Scholar
  7. 7.
    Asilturka M, Sayılkana F, Arpac E (2009) J Photochem Photobiol A 203:64CrossRefGoogle Scholar
  8. 8.
    Nguyen TV, Lee HC, Khan MA, Yang OB (2007) Sol Energy 81:529CrossRefGoogle Scholar
  9. 9.
    Choua CS, Yang RY, Weng MH, Yeh CH (2008) Adv Power Technol 19:541CrossRefGoogle Scholar
  10. 10.
    Kawano K, Hong BC, Sakamoto K, Tsuboi T, Seo HJ (2009) Opt Mater 31:1353CrossRefGoogle Scholar
  11. 11.
    Han ZY, Zhang JC, Yang XY, Zhu H, Cao WL (2010) J Inorg Organomet Polym Mater 20:32CrossRefGoogle Scholar
  12. 12.
    Han ZY, Zhang JC, Yang XY, Zhu H, Cao WL (2010) Sol Energy Mater Sol Cells 94:194CrossRefGoogle Scholar
  13. 13.
    Zeng LY, Dai SY, Wang KJ, Pan X, Shi CW, Guo L (2004) Chin Phys Lett 9:1835Google Scholar
  14. 14.
    Shi C, Yao Y, Yang Y (2006) J Am Chem Soc 128:8980CrossRefGoogle Scholar
  15. 15.
    Sirohi S, Sharma TP (1999) Opt Mater 13:267CrossRefGoogle Scholar
  16. 16.
    Xu ZL, Yang QJ, Xie C, Yan WJ, Du YG, Gao ZM, Zhang JH (2005) J Mater Sci 40:1539. doi: https://doi.org/10.1007/s10853-005-0599-6 CrossRefGoogle Scholar
  17. 17.
    Han ZY, Zhang JC, Yang XY, Zhu H, Cao WL (2010) J Mater Sci Mater Electron 21:554CrossRefGoogle Scholar
  18. 18.
    Asahi R, Morikawa T, Ohwaki T (2001) Science 293:269CrossRefGoogle Scholar
  19. 19.
    Hagfeldt A, Gräetzel M (1995) Chem Rev 95:49CrossRefGoogle Scholar
  20. 20.
    Kern R, Sastrawan R, Feber J (2002) Electrochim Acta 47:4213CrossRefGoogle Scholar
  21. 21.
    Wang Q, Moser JE, Gräetzel M (2005) J Phys Chem B 109:14945CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Xin Zheng
    • 1
  • Jingchang Zhang
    • 1
    • 2
    Email author
  • Lingli Peng
    • 1
  • Xiuying Yang
    • 2
  • Weiliang Cao
    • 1
    • 2
  1. 1.State Key Laboratory of Chemical Resource Engineering, Institute of Modern CatalysisBeijing University of Chemical TechnologyBeijingChina
  2. 2.Hainan Institute of Science and TechnologyHaikouChina

Personalised recommendations