Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5064–5070 | Cite as

Preparation of high-surface-area activated carbon from Zizania latifolia leaves by one-step activation with K2CO3/rarefied air

  • D. C. Huang
  • Q. L. Liu
  • W. Zhang
  • J. Ding
  • J. J. Gu
  • S. M. Zhu
  • Q. X. Guo
  • D. ZhangEmail author
Article

Abstract

An activated carbon (AC) with high-porosity was prepared from Zizania latifolia leaves by a one-step method combining chemical and physical activation. K2CO3 was employed as a chemical reagent, and air as a physical agent. During the activation, several key parameters were discussed, including the effects of activation temperature, K2CO3 impregnation ratio, amount of introduced air on the surface area and pore volumes evolution of the ACs derived from the Zizania latifolia leaves. The synergistic effect between the chemical agent and the physical agent was also investigated. Under optimal activation conditions, the as-synthesized AC attained a maximum surface area up to 2481 m2/g, with 1.21 cm3/g pore volume, and it had a micro/meso porosity developed by the combining activation. The crystal sizes of the as-synthesized AC along the a- and c-axes were about 5 nm and 1–2 nm, respectively. The average thickness of the crystallites is 3–4 layers with about 0.37 nm interlayer spacing.

Keywords

Activate Carbon Pore Volume K2CO3 Heat Treatment Temperature Impregnation Ratio 

Notes

Acknowledgements

The authors express their thanks to the financial support of China-Australia Cooperation Research Program (2010DFA52550CB601200), National Natural Science Foundation of China (50401005), and Shanghai Pujiang Program (06PJ14050).

References

  1. 1.
    Azargohar R, Dalai AK (2008) Microporous Mesoporous Mater 110:413CrossRefGoogle Scholar
  2. 2.
    Ismadji S, Bhatia SK (2001) Carbon 39:1237CrossRefGoogle Scholar
  3. 3.
    Srinivasakannan C, Batar MZA (2004) Biomass Bioenergy 27:89CrossRefGoogle Scholar
  4. 4.
    Wu FC, Tseng RL, Juang RS (2005) Sep Purif Technol 47:10CrossRefGoogle Scholar
  5. 5.
    Wu FC, Tseng RL (2006) J Colloid Interface Sci 294:21CrossRefGoogle Scholar
  6. 6.
    JY Gu, KX Li, Wang J, He HW (2010) Microporous Mesoporous Mater 131:393CrossRefGoogle Scholar
  7. 7.
    Barrientos-Ramírez S, Oca-Ramírez GM, Sepúlveda-Escribano A, Pastor-Blas MM, González-Montiel A, Rodríguez-Reinoso F (2010) Catal Today 150:42CrossRefGoogle Scholar
  8. 8.
    Bueres RF, Asedegbega-Nieto E, Díaz E, Ordóñez S, Díez FV (2010) Catal Today 150:16CrossRefGoogle Scholar
  9. 9.
    Zhang T, Walter Walawender P, Fan LT, Fan M, Daugaard D, Brown RC (2004) Chem Eng J 105:53CrossRefGoogle Scholar
  10. 10.
    Hayashi J, Horikawa T, Muroyama K, Gomes VG (2002) Microporous Mesoporous Mater 55:63CrossRefGoogle Scholar
  11. 11.
    Guo Y, David A (2007) Microporous Mesoporous Mater 100:12CrossRefGoogle Scholar
  12. 12.
    Adinata D, Ashri WM, Daud W, Aroua MK (2007) Bioresour Technol 98:145CrossRefGoogle Scholar
  13. 13.
    Rajgopal S, Karthikeyan T, Prakashkumar BG, Miranda LS (2006) Chem Eng J 116:211CrossRefGoogle Scholar
  14. 14.
    Sentorun-Shalaby Ç, Uçak-Astarlıoglu MG, Artok L, Sarıcı Ç (2006) Microporous Mesoporous Mater 88:126CrossRefGoogle Scholar
  15. 15.
    Paraskeva P, Kalderis D, Diamadopoulos E (2008) J Chem Technol Biotechnol 83:581CrossRefGoogle Scholar
  16. 16.
    Dias JM, Alvim-Ferraz MCM, Almeida MF, Rivera-Utrilla J, Sánchez-Polo M (2007) J Environ Manag 85:833CrossRefGoogle Scholar
  17. 17.
    El-Hendawy AA, Samra SE, Girgis BS (2001) Colloids Surf A 180:209CrossRefGoogle Scholar
  18. 18.
    Moreno-Castilla C, Carrosco-Marin F, Victoria-López-Ramon M, Alvarez-Merino MA (2001) Carbon 39:1415CrossRefGoogle Scholar
  19. 19.
    Ichcho S, Khouya E, Fakhi S, Ezzine M, Hannache H, Pallier R, Naslain R (2005) J Hazard Mater 118:45CrossRefGoogle Scholar
  20. 20.
    Okada K, Yamamoto N, Kameshima Y, Yasumori A (2003) J Colloid Interface Sci 262:179CrossRefGoogle Scholar
  21. 21.
    Guo J, Lu AC (2003) Mater Chem Phys 80:114CrossRefGoogle Scholar
  22. 22.
    Lu AC, Yang T (2004) J Colloid Interface Sci 274:594CrossRefGoogle Scholar
  23. 23.
    Lillo-Rodenas MA, Juan-Juan J, Cazorla-Amoros D, Linares-Solano A (2004) Carbon 42:1371CrossRefGoogle Scholar
  24. 24.
    Raymundo-Pinero E, Azais P, Cacciaguerra T, Cazorla-Amoros D, Linares-Solano A, Beguin F (2005) Carbon 43:786CrossRefGoogle Scholar
  25. 25.
    Tsai WT, Chang CY, Lee SL (1998) Bioresour Technol 64:211CrossRefGoogle Scholar
  26. 26.
    Karim MM, Das AK, Lee SH (2006) Anal Chim Acta 576:37CrossRefGoogle Scholar
  27. 27.
    Gan˜an J, Gonza′lez-Garcı′a CM, Gonza′lez JF, Sabio E, Macı′as-Garcı′a A, Dı′az-Dı′ez MA (2004) Appl Surf Sci 238:347CrossRefGoogle Scholar
  28. 28.
    Bansode RR, Losso JN, Marshall WE, Rao RM, Portier RJ (2003) Bioresour Technol 90:175CrossRefGoogle Scholar
  29. 29.
    Walker PL Jr, Almagro A (1995) Carbon 33:239CrossRefGoogle Scholar
  30. 30.
    Gergova K, Petrov N, Butuzova L, Minkova V, Isaeva L (1993) J Chem Technol Biotechnol 58:321CrossRefGoogle Scholar
  31. 31.
    Yorgun S, Vurala N, Demirala H (2009) Microporous Mesoporous Mater 122:189CrossRefGoogle Scholar
  32. 32.
    Olivares-Marín M, Fernández-González C, Macías-Garcia A, Gómez-Serrano V (2006) Appl Surf Sci 252:5980CrossRefGoogle Scholar
  33. 33.
    Williams PT, Reed AR (2006) Biomass Bioenergy 30:144CrossRefGoogle Scholar
  34. 34.
    Cuesta A, Mart′ınez-Alonso A, Tasco′n JMD, Bradley RH (1997) Carbon 35:967CrossRefGoogle Scholar
  35. 35.
    Blanco Lo′pez MC, Mart′ınez-Alonso A, Tasco′n JMD (2000) Microporous Mesoporous Mater 34:171CrossRefGoogle Scholar
  36. 36.
    Ishii C, Suzuki T, Shindo N, Kaneko K (1997) J Porous Mater 41:81Google Scholar
  37. 37.
    Kumar K, Saxena RK, Kothari R, Suri DK, Kaushik NK, Bohra JN (1997) Carbon 351:842Google Scholar
  38. 38.
    Carrott PJM, Nabais JMV, Ribeiro Carrott MML, Pajares JA (2001) Carbon 39:1543CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • D. C. Huang
    • 1
  • Q. L. Liu
    • 1
  • W. Zhang
    • 1
  • J. Ding
    • 1
  • J. J. Gu
    • 1
  • S. M. Zhu
    • 1
  • Q. X. Guo
    • 2
  • D. Zhang
    • 1
    Email author
  1. 1.State Key Lab of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Electrical and Electronic EngineeringSaga UniversitySagaJapan

Personalised recommendations