Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5056–5063 | Cite as

Estimation of dynamic fatigue strengths in brittle materials under a wide range of stress rates

  • Shinya MatsudaEmail author
  • Ryosuke Watanabe
Article

Abstract

This paper aims to statistically estimate the dynamic fatigue strength in brittle materials under a wide range of stress rates. First, two probabilistic models were derived on the basis of the slow crack growth (SCG) concept in conjunction with two-parameter Weibull distribution. The first model, Model I, is a conventional probabilistic delayed-fracture model based on a concept wherein the length of the critical crack growth due to SCG is enough larger than the initial crack length. For the second model, Model II, a new probabilistic model is derived on the basis of a concept wherein the critical cracks have widely ranging lengths. Next, a four-point bending test using a wide range of stress rates was performed for soda glass and alumina ceramics. We constructed fracture probability–strength–time diagrams (F–S–T diagrams) with the experimental results of both materials using both models. The F–S–T diagrams described using Model II were in good agreement with plots of the fracture strength and the fracture time of both materials more so than Model I.

Keywords

Fatigue Strength Brittle Material Fracture Strength Stress Rate Fracture Probability 

References

  1. 1.
    Evans AG (1974) Int J Fract 10(2):251CrossRefGoogle Scholar
  2. 2.
    Evans AG, Johnson H (1975) J Mater Sci 10:214. doi: https://doi.org/10.1007/BF00540345 CrossRefGoogle Scholar
  3. 3.
    Futakawa M, Kikuchi K, Tanabe Y, Muto Y (1997) J Eur Ceram Soc 17:1573CrossRefGoogle Scholar
  4. 4.
    Barinov SM, Ivanov NV, Orlov SV, Shevchenko V (1998) Ceram Int 24:421CrossRefGoogle Scholar
  5. 5.
    Pan LS, Matsuzawa M, Horibe S (1998) Mater Sci Eng A 244:199CrossRefGoogle Scholar
  6. 6.
    Evans AG (1980) Int J Fract 16(6):485CrossRefGoogle Scholar
  7. 7.
    Seshadri SG, Srinivasan M, Weber GE (1982) J Mater Sci 17:1297. doi: https://doi.org/10.1007/BF00752238 CrossRefGoogle Scholar
  8. 8.
    Guiu F, Reece MJ, Vaughan DAJ (1991) J Mater Sci 26:3275. doi: https://doi.org/10.1007/BF01124674 CrossRefGoogle Scholar
  9. 9.
    Tanaka T, Nakayama H, Okabe N, Imamichi T (1995) Strength and crack growth behavior of sintered silicon nitride in cyclic fatigue. Cyclic fatigue in ceramics. Elsevier Science, Japan, p II345Google Scholar
  10. 10.
    Ping Z, Zhongqin L, Guanlong C, Ikeda K (2004) Int J Fatigue 26:1109CrossRefGoogle Scholar
  11. 11.
    Davidge RW, Mclaren JR, Tappin G (1973) J Mater Sci 8:1699. doi: https://doi.org/10.1007/BF00552179 CrossRefGoogle Scholar
  12. 12.
    Aoki S, Ohata I, Ohnabe H, Sakata M (1983) Int J Fract 21:285CrossRefGoogle Scholar
  13. 13.
    Kokubo T, Ito S, Shigematsu M, Sakka S (1987) J Mater Sci 22:4067. doi: https://doi.org/10.1007/BF01133359 CrossRefGoogle Scholar
  14. 14.
    Okabe N, Ikeda T (1991) Mater Sci Eng A 143:11CrossRefGoogle Scholar
  15. 15.
    Okabe N, Hirata H (1995) High temperature fatigue properties for some types of SiC and Si3N4. Cyclic fatigue in ceramics. Elsevier Science, Japan, p 245Google Scholar
  16. 16.
    Pfingsten T, Glien K (2006) J Eur Ceram Soc 26:3061CrossRefGoogle Scholar
  17. 17.
    Evans AG, Fuller ER (1974) Metall Trans 5:27Google Scholar
  18. 18.
    Tokunaga H, Deng G, Ikeda K, Kaizu K (2005) Japan Soc Mech Eng A 71(712):1708CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNumazu National College of TechnologyNumazuJapan

Personalised recommendations