Advertisement

Journal of Materials Science

, Volume 46, Issue 12, pp 4206–4215 | Cite as

First-principles study of structure, vacancy formation, and strength of bcc Fe/V4C3 interface

  • Kaoru NakamuraEmail author
  • Toshiharu Ohnuma
  • Takashi Ogata
IIB 2010

Abstract

Voids are representative of the damage process in both creep and ductile fractures. Although the matrix/precipitate interface has been considered the preferential nucleation site for voids, the relationship between the atomic structure of this interface and the nucleation mechanism of a void has never been sufficiently investigated. In this study, the bcc Fe/V4C3 interface is selected as a model interface between a matrix and precipitate. The vacancy formation energy and intrinsic mechanical strength at this interface are investigated using a first-principles calculation because they should be related with the nucleation of creep and ductile voids, respectively. Within the considered interface, the Fe vacancy is found to be dominant. When the Baker–Nutting orientation relationship is satisfied at the interface, the calculated intrinsic mechanical strength of the interface is 23.8 GPa. However, when the geometric coherence at the interface is low as compared to that of the Baker–Nutting orientation relationship, it is found that the interfacial mechanical strength is significantly weakened. At each interface, it is found that the back-bond of the interface determined the interfacial strength because of the strongly bonded Fe–C on the interface. The nucleation mechanism of a void at the matrix/precipitate interface is discussed based on the present findings. It is suggested that local decohesion at the matrix/precipitate interface should be the origin of the nucleation of a ductile void.

Keywords

High Resolution Transmission Electron Microscope Orientation Relationship Vanadium Carbide Vacancy Formation Energy Energetic Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kassner ME, Hayes TA (2003) Int J Plast 19:1715CrossRefGoogle Scholar
  2. 2.
    Dobrzanski J (2004) J Mater Process Technol 157–158:297CrossRefGoogle Scholar
  3. 3.
    Wahab AA, Kral MV (2005) Mater Sci Eng A 412:222CrossRefGoogle Scholar
  4. 4.
    Wahab AA, Hutchinson CR, Kral MV (2006) Scr Mater 55:69CrossRefGoogle Scholar
  5. 5.
    Kim KJ, Hong HU, Min KS, Nam SW (2004) Mater Sci Eng A 387–389:531Google Scholar
  6. 6.
    Sarwar M, Priestner R (1996) J Mater Sci 31:2091. doi: 10.1007/BF00356631 CrossRefGoogle Scholar
  7. 7.
    Das SK, Chatterjee S, Tarafder S (2009) J Mater Sci 44:1094. doi: 10.1007/s10853-008-3106-z CrossRefGoogle Scholar
  8. 8.
    Erdogan M (2002) J Mater Sci 37:3623. doi: 10.1023/A:1016548922555 CrossRefGoogle Scholar
  9. 9.
    Oh YJ, Lee BS, Kwon SC, Hong JH (1999) J Mater Sci 34:4751. doi: 10.1023/A:1004630904296 CrossRefGoogle Scholar
  10. 10.
    Ogata S, Umeno Y, Kohyama M (2010) Model Simul Mater Sci Eng 17:013001CrossRefGoogle Scholar
  11. 11.
    Mizuno M, Tanaka I, Adachi H (1993) Acta Mater 46:1637CrossRefGoogle Scholar
  12. 12.
    Shishidou T, Lee JH, Zhao YJ, Freeman AJ (2003) J Appl Phys 93:6876CrossRefGoogle Scholar
  13. 13.
    Arya A, Carter EA (2003) J Chem Phys 118:8982CrossRefGoogle Scholar
  14. 14.
    Lee JH, Shishidou T, Zhao YJ, Freeman AJ, Olson GB (2005) Philos Mag 85:3683CrossRefGoogle Scholar
  15. 15.
    Arya A, Carter EA (2004) Surf Sci 560:103CrossRefGoogle Scholar
  16. 16.
    Tingaud D, Maugis P (2010) Comput Mater Sci 49:60CrossRefGoogle Scholar
  17. 17.
    Cao J, Yong Q, Liu Q, Sun X (2007) J Mater Sci 42:10080. doi: 10.1007/s10853-007-2000-4 CrossRefGoogle Scholar
  18. 18.
    Cabibo M, Fabrizi A, Merlin M, Garagnani GL (2008) J Mater Sci 43:6857. doi: 10.1007/s10853-008-3000-8 CrossRefGoogle Scholar
  19. 19.
    Babu NK, Suresh MR, Sinha PP, Sarma DS (2006) J Mater Sci 41:2971. doi: 10.1007/s10853-006-6718-1 CrossRefGoogle Scholar
  20. 20.
    Boniszewski T, Eaton NF (1969) Met Sci 3:103CrossRefGoogle Scholar
  21. 21.
    Nakamura K, Ogata T (2011) J Soc Mater Sci 60:102CrossRefGoogle Scholar
  22. 22.
    Emmons GH, Williams WS (1983) J Mater Sci 18:2589. doi: 10.1007/BF00547575 CrossRefGoogle Scholar
  23. 23.
    Locci IE, Michal GM (1988) Metall Mater Trans A 20:237Google Scholar
  24. 24.
    Maropoulous S, Karagiannis S, Ridley N (2007) J Mater Sci 42:1309. doi: 10.1007/s10853-006-1191-4 CrossRefGoogle Scholar
  25. 25.
    Tsuchida Y, Inoue T, Suzuki T (2004) Int J Press Vessel Pip 81:191CrossRefGoogle Scholar
  26. 26.
    Baker RG, Nutting J (1959) Iron Steel Inst 64:1Google Scholar
  27. 27.
    Nishida T, Tanino M (1965) J Jpn Inst Met 29:728Google Scholar
  28. 28.
    Senior BA (1988) Mater Sci Eng A 103:263CrossRefGoogle Scholar
  29. 29.
    Yamasaki S, Bhadeshia HKDH (2003) Mater Sci Technol 19:1335CrossRefGoogle Scholar
  30. 30.
    Kresse G, Furthmüller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  31. 31.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  32. 32.
    Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396CrossRefGoogle Scholar
  33. 33.
    Methfessel M, Paxton AT (1989) Phys Rev B 40:3616CrossRefGoogle Scholar
  34. 34.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  35. 35.
    Zhang J, Guyot F (1999) Phys Chem Min 26:206CrossRefGoogle Scholar
  36. 36.
    James WJ, Straumanis ME (1960) J Electrochem Soc 107:69Google Scholar
  37. 37.
    Liu H, Zhu J, Liu Y, Lai Z (2008) Mater Lett 62:3084CrossRefGoogle Scholar
  38. 38.
    Momma K, Izumi F (2008) J Appl Crystallogr 41:653CrossRefGoogle Scholar
  39. 39.
    Ikuhara Y, Pirouz P (1996) Mater Sci Forum 207–209:121CrossRefGoogle Scholar
  40. 40.
    Ikuhara Y, Sugawara Y, Tanaka I, Pirouz P (1997) Interface Sci 5:5CrossRefGoogle Scholar
  41. 41.
    Ikuhara Y, Pirouz P (1993) Ultramicroscopy 52:421CrossRefGoogle Scholar
  42. 42.
    Ikuhara Y, Pirouz P, Heuer AH, Yadavalli S, Flynn CP (1994) Philos Mag A 70:75CrossRefGoogle Scholar
  43. 43.
    Sasaki T, Matsunaga K, Ohta H, Hosono H, Yamamoto T, Ikuhara Y (2003) Sci Technol Adv Mater 4:575CrossRefGoogle Scholar
  44. 44.
    Sasaki T, Matsunaga K, Ohta H, Hosono H, Yamamoto T, Ikuhara Y (2004) Mater Trans 45:2137CrossRefGoogle Scholar
  45. 45.
    Raj R, Ashby MF (1975) Acta Metall 23:653CrossRefGoogle Scholar
  46. 46.
    Häglund J, Guillermet AF, Grimvall G, Körling M (1993) Phys Rev B 48:11685CrossRefGoogle Scholar
  47. 47.
    Hartford J (2000) Phys Rev B 61:2221CrossRefGoogle Scholar
  48. 48.
    Matsunaga K, Sasaki T, Shibata N, Mizoguchi T, Yamamoto T, Ikuhara Y (2006) Phys Rev B 74:125423CrossRefGoogle Scholar
  49. 49.
    Peng P, Jin ZH, Yang R, Hu ZQ (2004) J Mater Sci 39:3957. doi: 10.1023/B:JMSC.0000031477.24789.93 CrossRefGoogle Scholar
  50. 50.
    Voter AF, Montalenti F, Germann TC (2002) Ann Rev Mater Res 32:321CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Kaoru Nakamura
    • 1
    Email author
  • Toshiharu Ohnuma
    • 1
  • Takashi Ogata
    • 1
  1. 1.Central Research Institute of Electric Power IndustryYokosukaJapan

Personalised recommendations