Advertisement

Journal of Materials Science

, Volume 46, Issue 15, pp 5044–5049 | Cite as

Effect of solvents on the dynamic viscoelastic behavior of poly(methyl methacrylate) film prepared by solvent casting

  • Niranjan PatraEmail author
  • Marco Salerno
  • Alberto Diaspro
  • Athanassia Athanassiou
Article

Abstract

Poly(methyl methacrylate) films were prepared by dissolving the polymer in chloroform, toluene and tetrahydrofuran, with identical concentrations of 200 mg/mL, and drop casting the solutions on Teflon surface at room temperature. The thermal, thermomechanical and structural properties have been investigated by differential scanning calorimetry, dynamic mechanical analyzer, and Fourier transform infrared spectroscopy, respectively. The dynamic mechanical behavior of the films has been measured over a temperature range of 30–150 °C, using sinusoidal stress with a frequency of 2 Hz. The samples prepared from tetrahydrofuran showed the highest storage modulus, indicating a higher polymer chain entanglement in that solvent, whereas the samples prepared from chloroform showed the lowest storage modulus. The samples prepared from chloroform, which showed the weakest mechanical properties, also showed the lowest glass transition temperature, which is evidence of the plasticization and solvent retention mechanism of chloroform. The spectroscopic analysis confirmed the solvent-polymer interactions giving rise to the above mentioned effects.

Keywords

Differential Scanning Calorimetry PMMA Storage Modulus Dynamic Mechanical Analysis Creep Strain 

References

  1. 1.
    Haller I, Hatzakis M, Srinivasan R (1968) IBM J Res Develop 12:251CrossRefGoogle Scholar
  2. 2.
    Burke B, Herlihy T Jr, Spisak A, Williams K (2008) Nanotechnology 19:215301CrossRefGoogle Scholar
  3. 3.
    Chou SY, Krauss PR, Renstrom PJ (1995) Appl Phys Lett 67:3114CrossRefGoogle Scholar
  4. 4.
    D’Amore F, Lanata M, Pietralunga S, Gallazzi M, Zerbi G (2004) Opt Mater 24:661CrossRefGoogle Scholar
  5. 5.
    Sciancalepore C, Cassano T, Curri M, Mecerreyes D, Valentini A, Agostiano A, Tommasi R, Striccoli M (2008) Nanotechnology 19:205705CrossRefGoogle Scholar
  6. 6.
    Bistac S, Schultz J (1997) Int J Adhesion Adhesives 17:197CrossRefGoogle Scholar
  7. 7.
    Feng X, Weiwen F, Rongshi C (2006) Chem China 1:45Google Scholar
  8. 8.
    Hong PD, Huang HT, Chou CM (2000) Polym Int 49:407CrossRefGoogle Scholar
  9. 9.
    Bubb DM, Papantonakis M, Collins B, Brookes E, Wood J, Gurudas U (2007) Chem Phys Lett 448:194CrossRefGoogle Scholar
  10. 10.
    Kaczmarek H, Chaberska H (2008) Polym Testing 27:736CrossRefGoogle Scholar
  11. 11.
    Patra N, Barone AC, Salerno M (2011) Adv Polym Technol 30:12CrossRefGoogle Scholar
  12. 12.
    Hansen C (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC Press, Boca Raton, FLCrossRefGoogle Scholar
  13. 13.
    Vien DL, Colthup NB, Fateley WG, Grasselli JG (1991) Infrared and Raman characteristic frequencies of organic molecules. Academic Press, New YorkGoogle Scholar
  14. 14.
    Brandrup J, Immergut EH (1999) Polymer handbook, 4th edn. Wiley Interscience, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Niranjan Patra
    • 1
    • 2
    Email author
  • Marco Salerno
    • 1
  • Alberto Diaspro
    • 1
  • Athanassia Athanassiou
    • 1
    • 3
    • 4
  1. 1.Italian Institute of TechnologyGenoaItaly
  2. 2.University of GenovaGenoaItaly
  3. 3.National Nanotechnology LaboratoryCNR—Istituto di NanoscienzeLecceItaly
  4. 4.Center for Biomolecular Nanotechnologies of IIT @UniLeLecceItaly

Personalised recommendations