Advertisement

Journal of Materials Science

, Volume 46, Issue 22, pp 7106–7113 | Cite as

Soft mechanochemically assisted synthesis of nano-sized LiCoO2 with a layered structure

  • E. Grigorova
  • T. S. Mandzhukova
  • M. Khristov
  • M. Yoncheva
  • R. Stoyanova
  • E. ZhechevaEmail author
Size Dependent Effects

Abstract

Soft mechanochemically assisted reaction between CoOOH and LiOH·H2O at 400 °C yields O3-layered LiCoO2 with nanometric particle sizes of 20–30 nm. The interaction of CoOOH with LiOH·H2O is monitored by DTA and TGA analysis. XRD powder and TEM analysis is used for structural and morphological characterization of the precursors and target LiCoO2. Soft mechanochemical treatment of the CoOOH–LiOH·H2O mixture leads to amorphization of the lithium salt, while CoOOH remains intact. In addition, a partial exchange of protons from CoOOH with lithium takes place. Thermal treatment at 400 °C of the mechanochemically treated mixture yields layered LiCoO2 with a small amount of a spinel-type Li2+yCo2−yO4 phase (less than 2%). The morphology of LiCoO2 inherits the morphology of CoOOH in the precursor. Layered LiCoO2 displays thin nanometric particles with a narrow particle size distribution: more than 50% of particles are distributed between 20 and 30 nm. The electrochemical extraction and insertion of lithium in nano-sized LiCoO2 is examined in model lithium cells using a galvanostatic mode.

Keywords

Lithium LiOH Spinel Phase Narrow Particle Size Distribution Lithium Salt 

Notes

Acknowledgements

Authors are grateful to the financial support from the National Science Fund of Bulgaria (IDEAS No D0-02-309/2008). Partial financial support by the National Centre for New Materials UNION (Contract No DO-02-82/2008) is also acknowledged. We are grateful of TIMCAL Company for providing carbon additives.

References

  1. 1.
    Ellis BL, Lee KT, Nazar LF (2010) Chem Mater 22:691CrossRefGoogle Scholar
  2. 2.
    Terasaki I, Sasago Y, Uchinokura K (1997) Phys Rev B 56:R12685CrossRefGoogle Scholar
  3. 3.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nature 407:496CrossRefGoogle Scholar
  4. 4.
    Maier J (2005) Nat Mater 4:805CrossRefGoogle Scholar
  5. 5.
    Zhecheva E, Stoyanova R, Gorova M, Alcantara R, Morales J, Tirado JL (1996) Chem Mater 8:1429CrossRefGoogle Scholar
  6. 6.
    Zhecheva E, Stoyanova R, Gorova M, Alcantara R, Morales J, Tirado JL (1997) Ionics 3:1CrossRefGoogle Scholar
  7. 7.
    Kim DS, Lee CK, Kim H (2010) Solid State Sci 12:45CrossRefGoogle Scholar
  8. 8.
    Kim KH, Kim KB (2008) Ultrason Sonochem 15:1019CrossRefGoogle Scholar
  9. 9.
    Larcher D, Delobel B, Dantras-Laffont L, Simon E, Blach JF, Baudrin E (2010) Inorg Chem 49:10949CrossRefGoogle Scholar
  10. 10.
    Yoshimura M, Suchanek W (1997) Solid State Ion 98:197CrossRefGoogle Scholar
  11. 11.
    Larcher D, Palacín MR, Amatucci GG, Tarascon JM (1997) J Electrochem Soc 144:408CrossRefGoogle Scholar
  12. 12.
    Khanderi J, Schneider JJ (2010) Eur J Inorg Chem 29:4591CrossRefGoogle Scholar
  13. 13.
    Johnston WD, Heikes RR, Sestrich D (1958) J Phys Chem Solids 7:1CrossRefGoogle Scholar
  14. 14.
    Orman HJ, Wiseman PJ (1986) Acta Crystallogr C 40:12CrossRefGoogle Scholar
  15. 15.
    Delmas C, Fouassier C, Hagenmuller P (1980) Phys B 99:81CrossRefGoogle Scholar
  16. 16.
    Gummow RJ, Liles DC, Thackeray MM, David WIF (1993) Mater Res Bull 28:1177CrossRefGoogle Scholar
  17. 17.
    Morales J, Stoyanova R, Tirado JL, Zhecheva E (1994) J Solid State Chem 113:182CrossRefGoogle Scholar
  18. 18.
    Shao-Horn Y, Hackney SA, Kahaian AJ, Thackeray MM (2002) J Solid State Chem 168:60CrossRefGoogle Scholar
  19. 19.
    Jeong WT, Lee KS (2001) J Alloys Comp 322:205CrossRefGoogle Scholar
  20. 20.
    Kosova NV, Anufrienko VF, Larina TV, Rougier A, Aymard L, Tarascon JM (2002) J Solid State Chem 165:56CrossRefGoogle Scholar
  21. 21.
    Ninga LJ, Wua YP, Fanga SB, Rahm E, Holze R (2004) J Power Sources 133:229CrossRefGoogle Scholar
  22. 22.
    Delmas C, Braconnier JJ, Hagenmuller P (1982) Mater Res Bull 17:117CrossRefGoogle Scholar
  23. 23.
    Carlier D, Saadoune I, Croguennec L, Menetrier M, Suard E, Delmas C (2001) Solid State Ion 144:263CrossRefGoogle Scholar
  24. 24.
    Paulsen JM, Dahn JR (1999) Solid State Ion 126:3CrossRefGoogle Scholar
  25. 25.
    Komaba S, Yabuuchi N, Kawamoto Y (2009) Chem Lett 38:954CrossRefGoogle Scholar
  26. 26.
    Berthelot R, Carlier D, Pollet M, Doumerc JP, Delmas C (2009) Electrochem Solid-State Lett 12:A207CrossRefGoogle Scholar
  27. 27.
    Kawamura T, Makidera M, Okada S, Koga K, Miura N, Yamaki J (2005) J Power Sources 146:27CrossRefGoogle Scholar
  28. 28.
    Okubo M, Hosono E, Kudo T, Zhou HS, Honma I (2009) Solid State Ion 180:612CrossRefGoogle Scholar
  29. 29.
    Zhecheva E, Stoyanova R (1994) J Solid State Chem 109:47CrossRefGoogle Scholar
  30. 30.
    Zhecheva E, Stoyanova R (1991) Mater Res Bull. 26:1315CrossRefGoogle Scholar
  31. 31.
    Kosova NV, Uvarov NF, Devyatkina ET, Avvakumov EG (2000) Solid State Ion 135:107CrossRefGoogle Scholar
  32. 32.
    Delaplane RG, Ibers JA, Ferraro JR, Rush JJ (1969) J Chem Phys 50:1920CrossRefGoogle Scholar
  33. 33.
    Rodrıguez-Carvajal J (1990) In: Satellite meeting on powder diffraction of the XV congress of the IUCr, p 127Google Scholar
  34. 34.
    Benedek R, Thackeray MM, van de Wall A (2008) Chem Mater 20:5485CrossRefGoogle Scholar
  35. 35.
    Knop O, Reid KIG, Sutarno, Nakagawa Y (1968) Can. J. Chem 46:3463CrossRefGoogle Scholar
  36. 36.
    Fernandez-Rodrigues JM, Hernan L, Morales J, Tirado JL (1988) Mater Res Bull 23:899CrossRefGoogle Scholar
  37. 37.
    Zhecheva E, Stoyanova R, Angelov S (1990) Mater Chem Phys 25:361CrossRefGoogle Scholar
  38. 38.
    Antolini E (1997) Mater Res Bull 32:9CrossRefGoogle Scholar
  39. 39.
    Shinova E, Mandzhukova Ts, Grigorova E, Hristov M, Stoyanova R, Nihtianova D, Zhecheva E (2011) Solid State Ion. doi:  https://doi.org/10.1016/j.ssi.2011.01.018 CrossRefGoogle Scholar
  40. 40.
    Shlyakhtin OA, Choi SH, Yoon YS, Oh Y-J (2004) Electrochim Acta 50:511CrossRefGoogle Scholar
  41. 41.
    Choi SH, Kim J, Yoon YS (2004) J Power Sources 135:286CrossRefGoogle Scholar
  42. 42.
    Reimers JN, Dahn JR (1992) J Electrochem Soc 139:2091CrossRefGoogle Scholar
  43. 43.
    Reimers JN, Dahn JR, von Sacken U (1993) J Electrochem Soc 140:2752CrossRefGoogle Scholar
  44. 44.
    Alcántara R, Ortiz GF, Lavela P, Tirado JL, Jaegermann W, Thissen A (2005) J Electroanal Chem 584:147CrossRefGoogle Scholar
  45. 45.
    Alcántara R, Ortiz GF, Tirado JL, Stoyanova R, Zhecheva E, Ivanova S (2009) J Power Sources 194:494CrossRefGoogle Scholar
  46. 46.
    Ménétrier M, Carlier D, Blangero D, Delmas C (2008) Electrochem Solid State Lett 11:A179CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • E. Grigorova
    • 1
  • T. S. Mandzhukova
    • 1
  • M. Khristov
    • 1
  • M. Yoncheva
    • 1
  • R. Stoyanova
    • 1
  • E. Zhecheva
    • 1
    Email author
  1. 1.Institute of General and Inorganic ChemistryBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations