Journal of Materials Science

, Volume 46, Issue 14, pp 4803–4811 | Cite as

Synthesis and characterization of ruthenium dioxide nanostructures



We report the synthesis of ruthenium dioxide (RuO2) nanostructures by thermal evaporation of RuO2 powder. RuO2 nanostructures of different shapes were synthesized at various concentration, flow rate, and pressure of oxygen. At a constant pressure of 3 torr of flowing oxygen, polygonal prism-like RuO2 nanorods with flat tips were grown at an O2 flow rate of 100 sccm; club-shaped nanorods with obelisk tip were formed at 300 and 600 sccm, and hollow rods with square tip were formed at 1800 sccm. A mixture of O2 and Ar at a total flow rate of 600 sccm led to the formation of short club-shaped nanorods indicating the suppression effect of Ar on the growth of nanorods. The pressure also had a significant effect on the formation of RuO2 nanostructures, at a fixed flow rate of 600 sccm of O2, a pressure of 3 torr resulted in the growth of club-shaped RuO2 nanorods, while high pressures of 380 and 760 torr resulted in the formation of both linear club-shaped and pine tree-like hierarchical RuO2 nanorods. X-ray diffraction and transmission electron microscopy analysis indicated the formation of tetragonal phase of RuO2 with high crystallinity. A density functional calculation on RuO2, RuO3, and RuO4 was performed to help to explain the experimental results.


RuO2 Screw Dislocation Thermal Evaporation Method Copper Transmission Electron Microscopy High Working Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was supported by the National Science Foundation under the grant DMR-0548061. We would like to thank Dr. Dezhi Wang for the TEM measurements.


  1. 1.
    Xu JH, Jarlborg T, Freeman AJ (1989) Phys Rev B 40:7939CrossRefGoogle Scholar
  2. 2.
    Ryden WD, Lawson AW, Sartian CC (1970) Phys Rev B 1:1494CrossRefGoogle Scholar
  3. 3.
    Green ML, Gross ME, Papa LE, Schnoes KJ, Brasen D (1985) J Electrochem Soc 132:2677CrossRefGoogle Scholar
  4. 4.
    Khanna PK, Bhatnagar SK, Sisodia ML (1988) J Phys D 21:1796CrossRefGoogle Scholar
  5. 5.
    Dziedzic A, Golonka LJ, Kozlowski J, Licznerski BW, Nitsch K (1997) Meas Sci Technol 8:78CrossRefGoogle Scholar
  6. 6.
    Kim IH, Kim KB (2001) Electrochem Solid State Lett 4:A62CrossRefGoogle Scholar
  7. 7.
    Park BO, Lokhande CD, Park HS, Jung KD, Joo OS (2004) J Mater Sci 39:4313. doi: 10.1023/B:JMSC.0000033415.47096.db CrossRefGoogle Scholar
  8. 8.
    Norga GJ, Fe L, Wouters DJ, Maes HE (2000) Appl Phys Lett 76:1318CrossRefGoogle Scholar
  9. 9.
    Hartmann AJ, Neilson M, Lamb RN, Watanabe K, Scott JF (2000) Appl Phys A 70:239CrossRefGoogle Scholar
  10. 10.
    Kuhn AT, Mortimer CJ (1973) J Electrochem Soc 120:231CrossRefGoogle Scholar
  11. 11.
    Ferro S, De Battisti A (2002) J Phys Chem B 106:2249CrossRefGoogle Scholar
  12. 12.
    Lister TE, Tolmachev YV, Chu Y, Cullen WG, You H, Yonco R, Nagy Z (2003) J Electroanal Chem 554:71CrossRefGoogle Scholar
  13. 13.
    Ryan JV, Berry AD, Anderson ML, Long JW, Stroud RM, Cepak VM, Browning VM, Rolison DR, Merzbacher CI (2000) Nature 406:169CrossRefGoogle Scholar
  14. 14.
    Hsieh CS, Tsai DS, Chen RS, Huang YS (2004) Appl Phys Lett 85:3860CrossRefGoogle Scholar
  15. 15.
    Delmer O, Balaya P, Kienle L, Maier J (2008) Adv Mater 20:501CrossRefGoogle Scholar
  16. 16.
    Iembo A, Fuso F, Arimondo E, Ciofi C, Pennelli G, Curro GM, Neri F, Allegrini M (1997) J Mater Res 12:1433CrossRefGoogle Scholar
  17. 17.
    Kim IH, Kim KB (2004) J Electrochem Soc 151:E7CrossRefGoogle Scholar
  18. 18.
    Satishkumar BC, Govindaraj A, Nath M, Rao CNR (2000) J Mater Chem 10:2115CrossRefGoogle Scholar
  19. 19.
    Cheng KW, Lin YT, Chen CY, Hsiung CP, Gan JY, Yeh JW, Hsieh CH, Chou LJ (2006) Appl Phys Lett 88:043115CrossRefGoogle Scholar
  20. 20.
    Chen RS, Chen CC, Huang YS, Chia CT, Chen HP, Tsai DS, Tiong KK (2004) Solid State Commun 131:349CrossRefGoogle Scholar
  21. 21.
    Liu YL, Wu ZY, Lin KJ, Huang JJ, Chen FR, Kai JJ, Lin YH, Jian WB, Lin JJ (2007) Appl Phys Lett 90:013105CrossRefGoogle Scholar
  22. 22.
    Vetrone J, Foster CM, Bai GR, Wang A, Patel J, Wu X (1998) J Mater Res 13:2281CrossRefGoogle Scholar
  23. 23.
    Bierman MJ, Lau YKA, Kvit AV, Schmitt AL, Jin S (2008) Science 320:1060CrossRefGoogle Scholar
  24. 24.
    Zhao FH, Li XY, Zheng JG, Yang XF, Zhao FL, Wong KS, Wang J, Lin WJ, Wu MM, Su Q (2008) Chem Mater 20:1197CrossRefGoogle Scholar
  25. 25.
    May SJ, Zheng JG, Wessels BW, Lauhon LJ (2005) Adv Mater 17:598CrossRefGoogle Scholar
  26. 26.
    Williams DB, Carter CB (1996) Transmission electron microscopy: a textbook for materials science. Plenum, New YorkGoogle Scholar
  27. 27.
    Wang Z, Qian XF, Yin J, Zhu ZK (2004) Langmuir 20:3441CrossRefGoogle Scholar
  28. 28.
    Zhang H, Yang D, Ma XY, Ji YJ, Xu J, Que DL (2004) Nanotechnology 15:622CrossRefGoogle Scholar
  29. 29.
    Jones RO, Gunnarsson O (1989) Rev Mod Phys 61:689CrossRefGoogle Scholar
  30. 30.
    Ceperley DM, Alder BJ (1980) Phys Rev Lett 45:566CrossRefGoogle Scholar
  31. 31.
    Ditchfield WJH, Pople JA (1971) J Chem Phys 54:724CrossRefGoogle Scholar
  32. 32.
    Hariharan PC, Pople JA (1973) Theor Chim Acta 28:213CrossRefGoogle Scholar
  33. 33.
    Bell WE, Tagami M (1963) J Phys Chem 67:2432CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of PhysicsFlorida International UniversityMiamiUSA

Personalised recommendations