Journal of Materials Science

, Volume 46, Issue 14, pp 4770–4779 | Cite as

Carbon nanotubes: do they toughen brittle matrices?

  • Johann Cho
  • Fawad Inam
  • Mike J. Reece
  • Zdeněk Chlup
  • Ivo Dlouhy
  • Milo S. P. ShafferEmail author
  • Aldo R. BoccacciniEmail author


The development of a model CNT-brittle matrix composite system, based on SiO2 glass containing well-dispersed CNTs at up to 15 wt%, allows a direct assessment of the effect of the nanoscale filler on fracture toughness (K IC). Samples were prepared by colloidal heterocoagulation followed by spark plasma sintering. Detailed K IC measurements, using both indentation and notched beam techniques, show a linear improvement with CNT content, with up to a twofold increase of fracture toughness at maximum loading. The results from the two methods used in this study show equivalent trends but differing absolute values; the relative merits of these two approaches to measuring nanocomposite toughness are compared. Possible toughening mechanisms associated with CNT pull-out, crack bridging, and crack deflection are identified, and discussed quantitatively, drawing on conventional short-fibre composite theory and the potential effects of scaling fibre diameter.


Fracture Toughness Carbon Fibre Spark Plasma Sinter Interfacial Shear Stress Crack Deflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The research carried out at IPM, Brno, Czech Republic (chevron notch fracture toughness measurement), was supported by the Czech Science Foundation under grant number 101/09/1821.


  1. 1.
    Thostenson ET, Ren ZF, Chou TW (2001) Compos Sci Technol 61(13):1899CrossRefGoogle Scholar
  2. 2.
    Shaffer MSP, Sandler JKW (2006) In: Processing and properties of nanocomposites. World Scientific, Singapore, p 1Google Scholar
  3. 3.
    Lau KT, Hui D (2002) Compos B Eng 33(4):263CrossRefGoogle Scholar
  4. 4.
    Harris PJ (2002) Carbon nanotubes and related structures. Cambridge University Press, CambridgeGoogle Scholar
  5. 5.
    Cho J, Boccaccini AR, Shaffer MSP (2009) J Mater Sci 44(8):1934. doi: 10.1007/s10853-009-3262-9 CrossRefGoogle Scholar
  6. 6.
    Zhan GD, Kuntz JD, Wan JL, Mukherjee AK (2003) Nat Mater 2(1):38CrossRefGoogle Scholar
  7. 7.
    Wang XT, Padture NP, Tanaka H (2004) Nat Mater 3(8):539CrossRefGoogle Scholar
  8. 8.
    Sheldon BW, Curtin WA (2004) Nat Mater 3(8):505CrossRefGoogle Scholar
  9. 9.
    Jiang DT, Thomson K, Kuntz JD, Ager JW, Mukherjee AK (2007) Scr Mater 56(11):959CrossRefGoogle Scholar
  10. 10.
    Padture NP, Curtin WA (2008) Scr Mater 58(11):989CrossRefGoogle Scholar
  11. 11.
    Jiang D, Mukherjee AK (2008) Scr Mater 58(11):991CrossRefGoogle Scholar
  12. 12.
    Otieno G, Koos AA, Dillon F, Wallwork A, Grobert N, Todd RI (2010) Carbon 48(8):2212CrossRefGoogle Scholar
  13. 13.
    Ye F, Liu LM, Wang YJ, Zhou Y, Peng B, Meng QC (2006) Scr Mater 55(10):911CrossRefGoogle Scholar
  14. 14.
    Inam F, Yan HX, Jayaseelan DD et al (2010) J Eur Ceram Soc 30:153CrossRefGoogle Scholar
  15. 15.
    Inam F, Yan H, Peijs T, Reece MJ (2010) Compos Sci Technol 70:947CrossRefGoogle Scholar
  16. 16.
    Singh C, Shaffer M, Windle AH (2003) Carbon 41(2):359CrossRefGoogle Scholar
  17. 17.
    Inam F, Yan H, Reece MJ, Peijs T (2010) Adv Appl Ceram 109(4):240CrossRefGoogle Scholar
  18. 18.
    Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64(9):533CrossRefGoogle Scholar
  19. 19.
    Dlouhy I, Reinisch M, Boccaccini AR, Knott JF (1997) Fatigue Fract Eng Mater Struct 20:1235CrossRefGoogle Scholar
  20. 20.
    Dlouhy I, Holzmann M, Man J, Valka L (1994) Kovove Mater Met Mater 32(1):3Google Scholar
  21. 21.
    Quinn GD, Bradt RC (2007) J Am Ceram Soc 90(3):673CrossRefGoogle Scholar
  22. 22.
    Ning JW, Zhang JJ, Pan YB, Guo JK (2004) Ceram Int 30(1):63CrossRefGoogle Scholar
  23. 23.
    Guo SQ, Sivakumar R, Kagawa Y (2007) Adv Eng Mater 9(1–2):84CrossRefGoogle Scholar
  24. 24.
    Mukhopadhyay A, Chu BTT, Green MLH, Todd RI (2010) Acta Mater 58:2685CrossRefGoogle Scholar
  25. 25.
    Xia Z, Riester L, Curtin WA, Li H, Sheldon BW, Liang J, Chang B, Xu JM (2004) Acta Mater 52(4):931CrossRefGoogle Scholar
  26. 26.
    Matthews FL, Rawlings RD (2003) Composite materials: engineering and science. Woodhead Publishing Limited, CambridgeGoogle Scholar
  27. 27.
    Fu SY, Lauke B (1997) J Mater Sci 32(8):1985. doi: 10.1023/A:1018593931951 CrossRefGoogle Scholar
  28. 28.
    Kim JK, Mai YW (1991) Compos Sci Technol 41(4):333CrossRefGoogle Scholar
  29. 29.
    Klug T (1994) J Mater Sci 29(15):4013. doi: 10.1007/BF00355963 CrossRefGoogle Scholar
  30. 30.
    Grande DH, Mandell JF, Hong KCC (1988) J Mater Sci 23(1):311. doi: 10.1007/BF01174071 CrossRefGoogle Scholar
  31. 31.
    Barber AH, Cohen SR, Kenig S, Wagner HD (2004) Compos Sci Technol 64(15):2283CrossRefGoogle Scholar
  32. 32.
    Huang YY, Knowles TPJ, Terentjev EM (2009) Adv Mater 21:3945CrossRefGoogle Scholar
  33. 33.
    Prewo KM (1988) J Mater Sci 23:2745. doi: 10.1007/BF00547446 CrossRefGoogle Scholar
  34. 34.
    Hull D, Clyne TW (1996) An introduction to composite materials. Cambridge University Press, CambridgeGoogle Scholar
  35. 35.
    Chawla KK (2003) Ceramic matrix composites, 2nd edn. Springer, BerlinGoogle Scholar
  36. 36.
    Cho J, Inam F, Reece M, Rehorek L, Dlouhy I, Shaffer M, Boccaccini AR (2010) Unpublished research (paper in preparation)Google Scholar
  37. 37.
    Evans AG, Zok FW (1994) Solid State Phys 47:177CrossRefGoogle Scholar
  38. 38.
    Sambell RAJ, Bowen DH, Briggs A, Phillips DC (1972) J Mater Sci 7(6):676. doi: 10.1007/BF00549379 CrossRefGoogle Scholar
  39. 39.
    Sambell RAJ, Phillips DC, Bowen DH (1972) J Mater Sci 7(6):663. doi: 10.1007/BF00549378 CrossRefGoogle Scholar
  40. 40.
    Wichmann MHG, Schulte K, Wagner HD (2008) Compos Sci Technol 68(1):329CrossRefGoogle Scholar
  41. 41.
    Peng B, Locascio M, Zapol P, Li S, Mielke SL, Schatz GC, Espinosa HD (2008) Nat Nanotechnol 3:626CrossRefGoogle Scholar
  42. 42.
    Sun LY, Gibson RF, Gordaninejad F, Suhr J (2009) Compos Sci Technol 69:2392CrossRefGoogle Scholar
  43. 43.
    Blanco J, Garcia EJ, De Villoria RG, Wardle BL (2009) J Compos Mater 43(8):825CrossRefGoogle Scholar
  44. 44.
    Kelly A (1970) Proc R Soc A 319:1536Google Scholar
  45. 45.
    Duncan RK, Chen XYG, Bult JB, Brinson LC, Schadler LS (2010) Compos Sci Technol 70:599CrossRefGoogle Scholar
  46. 46.
    Chen XY, Beyerlein IJ, Brinson LC (2009) Mech Mater 41(3):279CrossRefGoogle Scholar
  47. 47.
    Chen XY, Beyerlein IJ, Brinson LC (2009) Mech Mater 41(3):293CrossRefGoogle Scholar
  48. 48.
    Launey ME, Ritchie RO (2009) Adv Mater 21(20):2103CrossRefGoogle Scholar
  49. 49.
    Wang W, Yang K, Gaillard J, Bandaru PR, Rao AM (2008) Adv Mater 20:179CrossRefGoogle Scholar
  50. 50.
    Dlouhy I, Kotoul M, Vyslouzil T, Chlup Z, Boccaccini AR (2008) J Mater Sci 43:4022. doi: 10.1007/s10853-007-2317-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Johann Cho
    • 1
    • 2
  • Fawad Inam
    • 3
  • Mike J. Reece
    • 3
  • Zdeněk Chlup
    • 4
  • Ivo Dlouhy
    • 4
  • Milo S. P. Shaffer
    • 2
    Email author
  • Aldo R. Boccaccini
    • 1
    • 5
    Email author
  1. 1.Department of MaterialsImperial College LondonLondonUK
  2. 2.Department of ChemistryImperial College LondonLondonUK
  3. 3.Nanoforce Technology Ltd and School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK
  4. 4.Institute of Physics of Materials, ASCRBrnoCzech Republic
  5. 5.Department of Materials Science and EngineeringUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations