Journal of Materials Science

, Volume 46, Issue 13, pp 4646–4653 | Cite as

Dielectric relaxation behavior of CdS nanoparticles and nanowires

  • Anoop Chandran
  • M. Soosen Samuel
  • Jiji Koshy
  • K. C. GeorgeEmail author


The dielectric relaxation and scaling behavior of CdS nanoparticles and nanowires were investigated in the frequency range 102–106 Hz and in the temperature range 373–573 K by complex impedance spectroscopy and electric modulus spectroscopy. Studies on the complex permittivity revealed that the dielectric relaxation in CdS nanostructures deviates from Debye like behavior. A detailed study on the grain and grain boundary charge transport was carried out. The charge carrier transport in CdS nanostructures was identified to be hopping of polarons. From the combined analysis of the variation of imaginary part of electric modulus and complex impedance with frequency, it was found that at high temperatures localized conduction is dominant in CdS nanoparticles where as the long range hopping process is dominant with nanowires. It was also found that the scaling behavior of CdS nanoparticles varied considerably from that reported earlier.


Dielectric Permittivity Dielectric Relaxation Cadmium Sulfide Boundary Resistance Electric Modulus 



The authors wish to thank Kerala State Council for Science Technology and Environment (KSCSTE) (No. (T) 012/SRS/2008/CSTE) for the financial support. The first author would like to thank STIC (Cochin) and the Common Instrumentation Facility, SB College for the analyses carried out.


  1. 1.
    Joshy J, AbdulKhadar M (2001) Mater Sci Eng A 304–306:810Google Scholar
  2. 2.
    Cassina V, Gerosa L, Podestà A, Ferrari G, Sampietro M, Fiorentini F, Mazza T, Lenardi C, Milani P (2009) Phys Rev B 79:115422CrossRefGoogle Scholar
  3. 3.
    Biju V, Khadar MA (2003) J Mater Sci 38:4055. doi: CrossRefGoogle Scholar
  4. 4.
    Wang C, Ao Y, Wang P, Hou J, Qian J, Zhang S (2010) Mater Lett 64:439CrossRefGoogle Scholar
  5. 5.
    Chrysochoos J (1992) J Phys Chem 96:2868CrossRefGoogle Scholar
  6. 6.
    Hodes G, Albu-Yaron A (1988) Proc Electrochem Soc 88–14:298Google Scholar
  7. 7.
    Jun Z, Xiao-wei D, Zhi-Iiang L, Xu G, Xing-pi Z (2007) Trans Nonferrous Met Soc China 17:1367CrossRefGoogle Scholar
  8. 8.
    Abulkhadar M, Thomas B (1995) Phys Stat Sol A 150:755CrossRefGoogle Scholar
  9. 9.
    Tripathi R, Kumar A, Sinha TP (2009) Pramana J Phys 72:969CrossRefGoogle Scholar
  10. 10.
    Mukherjee S, Sudarsan V, Vatsa RK, Godbole SV, Kadam RM, Bhatta UM, Tyagi AK (2008) Nanotechnology 19:325704CrossRefGoogle Scholar
  11. 11.
    Cole KS, Cole RH (1941) J Chem Phys 9:341CrossRefGoogle Scholar
  12. 12.
    Macedo PB, Moynihan T, Bose R (1972) Phys Chem Glasses 13:171Google Scholar
  13. 13.
    Savitha T, Selvasekarapandian S, Ramya CS, Bhuvaneswari MS, Angelo PC (2007) J Mater Sci 42:5470. doi: CrossRefGoogle Scholar
  14. 14.
    Sural M, Ghosh A (1998) J Phys Condens Matter 10:10577CrossRefGoogle Scholar
  15. 15.
    Dutta A, Sinha TP (2007) Phys Rev B 76:155113CrossRefGoogle Scholar
  16. 16.
    Veena Gopalan E, Malini KA, Sakthi Kumar D, Yoshida Y, Al-Omari IA, Saravanan S, Anantharaman MR (2009) J Phy Condens Matter 21:146006CrossRefGoogle Scholar
  17. 17.
    Chiang YM, Lavik EB, Kosacki I, Tuller HL, Ying JY (1996) Appl Phys Lett 69:185CrossRefGoogle Scholar
  18. 18.
    Terwilliger CD, Chiang YM (1995) Acta Mater 43:319CrossRefGoogle Scholar
  19. 19.
    Raymond O, Font R, Suárez-Almodover N, Portelles J, Siqueiros JM (2005) J App Phys 97:84108CrossRefGoogle Scholar
  20. 20.
    Pradhan DK, Choudhary RNP, Rinaldi C, Katiyar RS (2009) J Appl Phys 106:24102CrossRefGoogle Scholar
  21. 21.
    Baskaran N (2002) J Appl Phys 92:825CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Anoop Chandran
    • 1
  • M. Soosen Samuel
    • 1
  • Jiji Koshy
    • 1
  • K. C. George
    • 1
    Email author
  1. 1.Department of PhysicsS. B. CollegeChanganasseryIndia

Personalised recommendations