Journal of Materials Science

, Volume 46, Issue 13, pp 4494–4508 | Cite as

Fracture features in soda-lime glass after testing with a spherical indenter

  • Andreas MomberEmail author


A thick soda-lime glass plate was indented with a spherical indenter at high indentation forces up to 1.839 kN. A systematisation of the fracture figures showed a basic structure, consisting of four individual zones. The detailed characteristics of these zones depended on indentation force. Existing models for the assessment of contact diameter and radial and lateral vent cracks length were proven. The appearance of fracture lances was observed and discussed. It was found that these lances formed during the intersection of conchoidal (lateral) fractures, and that their formation was bound to the elastic-plastic period of the indentation process. Features of fracture lances, namely the formation of numerous symmetric lance fronts, periodically occurring lance fronts, lance front statistics, and lance dimensions were described and discussed in detail. It was also shown that the formation of fracture lances showed elements of self-similarity and fractal geometry.


Indentation Test Outer Ring Spherical Indenter Contact Diameter Indentation Force 



This investigation was supported by the German Research Association (DFG), Bonn, Germany. The working group “Endogene Dynamik” of the Faculty Georesources and Materials Technology at the RWTH Aachen has kindly permitted the use of its high-performance optical microscopes.


  1. 1.
    Buehler MJ, Xu Z (2010) Nature 464(4):42CrossRefGoogle Scholar
  2. 2.
    Auerbach F (1891) Ann Phys Chem XLIII:61CrossRefGoogle Scholar
  3. 3.
    Peter K (1964) Glastechn Ber 37(7):333Google Scholar
  4. 4.
    Swain MV, Hagan JT (1976) J Phys D 9:2201CrossRefGoogle Scholar
  5. 5.
    Persson J, Breder K, Rowcloffe DJ (1993) J Mater Sci 28:6484. doi: CrossRefGoogle Scholar
  6. 6.
    Salman AD, Gorham DA (1997) J Mater Sci Lett 16:1099CrossRefGoogle Scholar
  7. 7.
    Gorham DA, Salman AD (1999) Wear 233–235:151CrossRefGoogle Scholar
  8. 8.
    Gorham DA, Salman AD, Tan H (2002) Philos Mag A 82(10):2231CrossRefGoogle Scholar
  9. 9.
    Quinn GD (2007) Fractography of ceramics and glasses. NIST Special Publication 960-16. NIST, Gaithersburg, MDGoogle Scholar
  10. 10.
    Smekal AG (1937) Glastechn Ber 15(7):259Google Scholar
  11. 11.
    Hull D (1996) J Mater Sci Lett 15:651CrossRefGoogle Scholar
  12. 12.
    Kirchner HP, Gruver RM (1977) In: Taplin DM (ed) Proceedings of 4th international conference on fracture, vol 3. Pergamon Press, New York, pp 959–965Google Scholar
  13. 13.
    Marshall DB, Lawn BR, Mecholsky JJ (1980) J Am Ceram Soc 63(5–6):358CrossRefGoogle Scholar
  14. 14.
    Hockey BJ, Lawn BR (1975) J Mater Sci 10:1275. doi: CrossRefGoogle Scholar
  15. 15.
    Tandon R, Buchheit TE (2007) J Am Ceram Soc 90(2):502CrossRefGoogle Scholar
  16. 16.
    Murgatroyd JB (1942) J Soc Glass Technol 26:155Google Scholar
  17. 17.
    Smekal AG (1953) Österr Ingenieur Archiv VII:49Google Scholar
  18. 18.
    Kienle R (1960) Glastechn Ber 33(9):321Google Scholar
  19. 19.
    Sommer E (1969) Eng Fract Mech 1:539CrossRefGoogle Scholar
  20. 20.
    Yoda M (1990) J Am Ceram Soc 73(7):2124CrossRefGoogle Scholar
  21. 21.
    Espinosa HC, Xu Y (1997) J Am Ceram Soc 80(8):2061CrossRefGoogle Scholar
  22. 22.
    Chai H, Ravichandran G (2009) Int J Impact Eng 36(3):375CrossRefGoogle Scholar
  23. 23.
    Kulawansa DM, Jensen LC, Langford SC, Dickinson JT (1994) J Mater Res 9(2):476CrossRefGoogle Scholar
  24. 24.
    Kocanda S, Kuzmenko A, Pismennyi NN, Sadovskii Y (1986) Strength Mater 18(9):1160CrossRefGoogle Scholar
  25. 25.
    Frid V, Bahat D, Rabinovich A (2005) J Struct Geol 27:145CrossRefGoogle Scholar
  26. 26.
    Wiederhorn SM, Hockey BJ (1983) J Mater Sci 18:766. doi: CrossRefGoogle Scholar
  27. 27.
    Wereszczak AA, Johanns KE, Kirkland TP, Anderson CE, Behner T, Patel P, Tempelton DW (2006) Report ADM002075. Oak Ridge National Laboratory, Oak Ridge, TN, 01 November 2006Google Scholar
  28. 28.
    Maekawa I, Shin H, Miyata H (1991) Eng Fract Mech 40(4):869Google Scholar
  29. 29.
    Satapathy S (2001) Int J Solids Struct 38:5833CrossRefGoogle Scholar
  30. 30.
    Kirchner HP, Ragosta JA (1983) J Am Ceram Soc 66(4):293CrossRefGoogle Scholar
  31. 31.
    Kuo SQ, Liu HY, Lindqvist PA, Tang CA (2004) In: Proceedings of Sinorock Symposium, Three Gorges Dam Site, China, 18–21 May, 2004Google Scholar
  32. 32.
    Hull D (1995) Int J Fract 70:59CrossRefGoogle Scholar
  33. 33.
    Djordjevic ZV, Li X, Shin WS, Wunder SL, Baran GR (1995) J Mater Sci 30:2968. doi: CrossRefGoogle Scholar
  34. 34.
    Kerkhof F (1970) Bruchvorgänge in Gläsern. Verlag der deutschen Glastechnischen Gesellschaft, Frankfurt am MainGoogle Scholar
  35. 35.
    Pons AJ, Karma A (2010) Nature 464(4):85CrossRefGoogle Scholar
  36. 36.
    Arora A, Marshall DB, Lawn BR (1979) J Non-Cryst Sol 31:415CrossRefGoogle Scholar
  37. 37.
    Peter K (1970) J Non-Cryst Sol 5:103CrossRefGoogle Scholar
  38. 38.
    Fischer-Cripps AC (2007) Introduction to contact mechanics, 2nd edn. Springer, HeidelbergCrossRefGoogle Scholar
  39. 39.
    Kim DK, Jung YG, Peterson IM, Lawn BR (1999) Acta Mater 47(18):4711CrossRefGoogle Scholar
  40. 40.
    Rhee YW, Kim HW, Deng Y, Lawn BR (2001) J Am Ceram Soc 84(3):561CrossRefGoogle Scholar
  41. 41.
    Bushby AJ, Swain MV (1995) In: Bradt RC et al (eds) Plastic deformation of ceramics. Plenum Press, New York, pp 161–172CrossRefGoogle Scholar
  42. 42.
    Marshall DB, Lawn BR, Evans AG (1982) J Am Ceram Soc 65(11):561CrossRefGoogle Scholar
  43. 43.
    Chen X, Hutchinson JW, Evans AG (2005) J Am Ceram Soc 88(5):1233CrossRefGoogle Scholar
  44. 44.
    Lawn BR (1998) J Am Ceram Soc 81(8):1977CrossRefGoogle Scholar
  45. 45.
    Lin B, Maer ME, Ravi-Chandar K (2010) Int J Fract 165(2):175CrossRefGoogle Scholar
  46. 46.
    Kerkhoff F (1975) Glastechn Ber 48(6):112Google Scholar
  47. 47.
    Swain MV, Lawn BR, Burns SJ (1974) J Mater Sci 9:175. doi: CrossRefGoogle Scholar
  48. 48.
    Gardon R (1978) J Am Ceram Soc 61(3):143CrossRefGoogle Scholar
  49. 49.
    Ji H, Keryvin V, Rouxel T, Hammouda T (2006) Scripta Mater 55:1159CrossRefGoogle Scholar
  50. 50.
    Russ JC (1994) Fractal surfaces. Plenum Press, New YorkCrossRefGoogle Scholar
  51. 51.
    Mandelbrot B (1987) Die fraktale Geometrie der Natur. Birkhäuser Verlag, BaselCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Faculty of Georesources and Materials EngineeringRheinisch-Westfälische Technische Hochschule AachenHamburgGermany

Personalised recommendations