Advertisement

Journal of Materials Science

, Volume 46, Issue 13, pp 4465–4470 | Cite as

Conditions and features of matrix and bulk carbonization of the organic precursors

  • Nataliya D. Lysenko
  • Pavel S. Yaremov
  • Vladimir G. Ilyin
  • Mariya V. Ovcharova
Article

Abstract

Comparative research of matrix and bulk carbonization of some organic precursors (sucrose, acetonitrile) in silica mesoporous materials SBA-15 and KIT-6 was conducted. X-ray diffraction, nitrogen adsorption analysis, Raman spectroscopy were used for determination of the structural-sorption characteristics of the obtained materials. It was shown that the carbon mesoporous materials CMK-8 obtained in the mesopores of KIT-6 had higher adsorption characteristics because of features of three-dimensional cubic structure, larger pore volume and framework’s wall thickness. It was established that partially graphitized spatially well-organized carbon materials were formed as a result of pyrolysis of acetonitrile in the silica matrices SBA-15 and KIT-6. It was conditioned by the absence of considerable spatial limitations for growth of graphite structures on the initial stage of the synthesis when the pores of the matrix were not filled up with the organic precursor. Product of bulk carbonization of sucrose is compact carbon microporous framework with low sorption characteristics (micropore volume is 0.09 cm3/g).

Keywords

Carbon Material Graphite Structure Mesoporous Molecular Sieve Organic Precursor Large Pore Volume 

References

  1. 1.
    Armandi M, Bonelli B, Bottero I et al (2007) Microporous Mesoporous Mater 103:150CrossRefGoogle Scholar
  2. 2.
    Zheivot VI, Molchanov VV, Zaikovskii VI et al (2010) Microporous Mesoporous Mater 130:7CrossRefGoogle Scholar
  3. 3.
    Kyotani T (2000) Carbon 38:269CrossRefGoogle Scholar
  4. 4.
    Ignat M, Van Oers CJ, Vernimmen J (2010) Carbon 48:1609CrossRefGoogle Scholar
  5. 5.
    Ryoo R, Joo SH, Kruk M et al (2001) Adv Mater 13:677CrossRefGoogle Scholar
  6. 6.
    Liang C, Li Z, Dai S (2008) Angew Chem Int Ed Engl 47(20):3696CrossRefGoogle Scholar
  7. 7.
    Jun S, Joo SH, Ryoo R et al (2000) J Am Chem Soc 122:10712CrossRefGoogle Scholar
  8. 8.
    Li J,Wang Sh,Tan X-Yu et al (2010) Chemi Indus Eng 3, (in press)Google Scholar
  9. 9.
    Ryoo R, Joo SH, Jun S (1999) J Phys Chem B 103:7743CrossRefGoogle Scholar
  10. 10.
    Wu Zh, Yang Y, Gu D et al (2009) Top Catal 52:12CrossRefGoogle Scholar
  11. 11.
    Wang X, Tian Y, Song G et al (2010) J Mater Sci 45(11):2958. doi: https://doi.org/10.1007/s10853-010-4292-z CrossRefGoogle Scholar
  12. 12.
    Pacula A (2008) J Phys Chem C 112:2764CrossRefGoogle Scholar
  13. 13.
    Zhao D, Feng J, Huo Q et al (1998) Science 279:548CrossRefGoogle Scholar
  14. 14.
    Kleitz F, Choi SH, Ryoo R (2003) Chem Commun 2136Google Scholar
  15. 15.
    Gregg SG, Sing KSW (1982) Adsorption, surface area and porosity, 2nd edn. Academic press, LondonGoogle Scholar
  16. 16.
    Dollimore D, Heal GR (1964) J appl Chem 14:109CrossRefGoogle Scholar
  17. 17.
    Horvath G, Kawazoe K (1983) J Chem Eng Jap 16:470CrossRefGoogle Scholar
  18. 18.
    Tarkovskaya IA (1981) Oxidized Carbon (in Russian). Naukova Dumka, KievGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Nataliya D. Lysenko
    • 1
  • Pavel S. Yaremov
    • 1
  • Vladimir G. Ilyin
    • 1
  • Mariya V. Ovcharova
    • 1
  1. 1.L.V. Pisarzhevsky Institute of Physical ChemistryKyivUkraine

Personalised recommendations