Journal of Materials Science

, Volume 46, Issue 12, pp 4169–4175 | Cite as

Atomistic structure and energetics of interface between Mn-doped γ-Ga2O3 and MgAl2O4

  • Hiroyuki Hayashi
  • Rong Huang
  • Fumiyasu Oba
  • Tsukasa Hirayama
  • Isao Tanaka
IIB 2010

Abstract

The interface between an Mn-doped γ-gallium oxide (Ga2O3) thin film and an MgAl2O4 (001) substrate has been investigated using high-resolution transmission electron microscopy (HRTEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), and first-principles calculations. A high-quality Mn-doped γ-Ga2O3 film with a defective spinel structure has been epitaxially grown by pulsed laser deposition. The γ-Ga2O3 crystal shows an uniform tetragonal distortion with a tetragonality of 1.05 throughout the film thickness of 75 nm. HRTEM and HAADF-STEM observations reveal that the γ-Ga2O3 and MgAl2O4 crystals form a coherent interface without any interfacial layers or precipitates. The atomistic structure and energies are theoretically evaluated for the interfaces with two types of termination plane, i.e., Mg- and Al2O4-termination of MgAl2O4. The cation sublattice is found to be continuous for both interfaces despite the defective spinel structure of Mn-doped γ-Ga2O3 with some vacant cation sites. The Al2O4-termination shows a lower interfacial energy than the Mg-termination under most conditions of the chemical potentials. This behavior is attributed to the energetic preference of the Mn–Al2O4 local configuration at the interface.

References

  1. 1.
    Ogita M, Saika N, Nakanishi Y, Hatanaka Y (1999) Appl Surf Sci 142:188CrossRefGoogle Scholar
  2. 2.
    Víllora EG, Yamaga M, Inoue T, Yabasi S, Masui Y, Sugawara T, Fukuda T (2002) Jpn J Appl Phys Part 2 41:L622CrossRefGoogle Scholar
  3. 3.
    Oshima T, Okuno T, Fujita S (2007) Jpn J Appl Phys Part 1 46:7217CrossRefGoogle Scholar
  4. 4.
    Hayashi H, Huang R, Ikeno H, Oba F, Yoshioka S, Tanaka I, Sonoda S (2006) Appl Phys Lett 89:181903CrossRefGoogle Scholar
  5. 5.
    Kaneko K, Nomura T, Kakeya I, Fujita S (2009) Appl Phys Express 2:075501CrossRefGoogle Scholar
  6. 6.
    Roy R, Hill VG, Osborn EF (1952) J Am Chem Soc 74:719CrossRefGoogle Scholar
  7. 7.
    Matsuzaki K, Hiramatsu H, Nomura K, Yanagi H, Kamiya T, Hirano M, Hosono H (2006) Thin Solid Films 496:37CrossRefGoogle Scholar
  8. 8.
    Huang R, Hayashi H, Oba F, Tanaka I (2007) J Appl Phys 101:063526CrossRefGoogle Scholar
  9. 9.
    Zinkevich M, Morales FM, Nitsche H, Ahrens M, Rühle M, Aldinger F (2004) Z Metallkd 95:756Google Scholar
  10. 10.
    Yamanaka T, Takeuchi Y (1983) Z Kristallogr 165:65CrossRefGoogle Scholar
  11. 11.
    Hayashi H, Huang R, Oba F, Hirayama T, Tanaka I (2011) J Mater Res (in press)Google Scholar
  12. 12.
    Liu R, Bohannan EW, Switzer JA, Oba F, Ernst F (2003) Appl Phys Lett 83:1944CrossRefGoogle Scholar
  13. 13.
    Oba F, Ernst F, Yu YS, Liu R, Kothari M, Switzer JA (2005) J Am Ceram Soc 88:253CrossRefGoogle Scholar
  14. 14.
    Ikuhara Y, Pirouz P (1993) Ultramicroscopy 52:421CrossRefGoogle Scholar
  15. 15.
    Ernst F, Raj R, Rühle M (1999) Z Metallkd 90:961Google Scholar
  16. 16.
    Ernst F (2002) Philos Mag A 82:2677CrossRefGoogle Scholar
  17. 17.
    Ernst F, Rečnik A, Langjahr PA, Nellist PD, Rühle M (1998) Acta Mater 47:183CrossRefGoogle Scholar
  18. 18.
    Langjahr PA, Lange FF, Wagner T, Rühle M (1998) Acta Mater 46:773CrossRefGoogle Scholar
  19. 19.
    Oba F, Sugawara Y, Hasegawa K, Izumi T, Shiohara Y, Hirayama T, Yamamoto T, Ikuhara Y (2004) J Appl Phys 95:2309CrossRefGoogle Scholar
  20. 20.
    Hasegawa K, Hobara N, Nakamura Y, Izumi T, Shiohara Y (2002) J Jpn Inst Met 66:320Google Scholar
  21. 21.
    Hasegawa K, Shibata J, Izumi T, Shiohara Y, Sugawara Y, Hirayama T, Oba F, Ikuhara Y (2003) Physica C 392:835CrossRefGoogle Scholar
  22. 22.
    Pennycook SJ, Jesson DE (1991) Ultramicroscopy 37:14CrossRefGoogle Scholar
  23. 23.
    Buban JP, Matsunaga K, Chen J, Shibata N, Ching WY, Yamamoto T, Ikuhara Y (2006) Science 311:212CrossRefGoogle Scholar
  24. 24.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  25. 25.
    Kresse G, Hafner J (1993) Phys Rev B 48:13115CrossRefGoogle Scholar
  26. 26.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  27. 27.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  28. 28.
    Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865CrossRefGoogle Scholar
  29. 29.
    Dudarev SL, Botton GA, Savrasov SY, Humphreys CJ, Sutton AP (1998) Phys Rev B 57:1505CrossRefGoogle Scholar
  30. 30.
    Anisimov VI, Zaanen J, Andersen OK (1991) Phys Rev B 44:943CrossRefGoogle Scholar
  31. 31.
    Posternak M, Baldereschi A, Massidda S, Marzari N (2002) Phys Rev B 65:184422CrossRefGoogle Scholar
  32. 32.
    Franchini C, Bayer V, Podloucky R, Paier J, Kresse G (2005) Phys Rev B 72:045132CrossRefGoogle Scholar
  33. 33.
    Choi M, Oba F, Tanaka I (2009) Phys Rev Lett 103:185502CrossRefGoogle Scholar
  34. 34.
    Kumagai Y, Oba F, Yamada I, Azuma M, Tanaka I (2009) Phys Rev B 80:085120CrossRefGoogle Scholar
  35. 35.
    Tran F, Blaha P, Schwarz K, Novák P (2006) Phys Rev B 74:155108CrossRefGoogle Scholar
  36. 36.
    Monkhorst HJ, Pack JD (1976) Phys Rev B 13:5188CrossRefGoogle Scholar
  37. 37.
    Hayashi H, Huang R, Oba F, Seko A, Tanaka I (unpublished)Google Scholar
  38. 38.
    Yoshioka S, Hayashi H, Kuwabara A, Oba F, Matsunaga K, Tanaka I (2007) J Phys Condens Matter 19:346211CrossRefGoogle Scholar
  39. 39.
    Momma K, Izumi F (2008) J Appl Crystallogr 41:653CrossRefGoogle Scholar
  40. 40.
    Benedek R, Alavi A, Seidman DN, Yang LH, Muller DA, Woodward C (2000) Phys Rev Lett 84:3362CrossRefGoogle Scholar
  41. 41.
    Zhang W, Smith JR (2000) Phys Rev B 61:16883CrossRefGoogle Scholar
  42. 42.
    Zhang W, Smith JR (2000) Phys Rev Lett 85:3225CrossRefGoogle Scholar
  43. 43.
    Parratt LG (1954) Phys Rev 95:359CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Hiroyuki Hayashi
    • 1
  • Rong Huang
    • 2
    • 3
  • Fumiyasu Oba
    • 1
  • Tsukasa Hirayama
    • 2
  • Isao Tanaka
    • 1
    • 2
  1. 1.Department of Materials Science and EngineeringKyoto UniversityKyotoJapan
  2. 2.Nanostructures Research LaboratoryJapan Fine Ceramics CenterNagoyaJapan
  3. 3.Key Laboratory of Polar Materials and DevicesMinistry of Education, East China Normal UniversityShanghaiChina

Personalised recommendations