Journal of Materials Science

, Volume 46, Issue 11, pp 3846–3854 | Cite as

Solubility and formation of ternary Widmanstätten precipitates in PbTe in the pseudo-binary PbTe–Bi2Te3 system

  • Teruyuki Ikeda
  • Marcus B. Toussaint
  • Kristin Bergum
  • Shiho Iwanaga
  • G. Jeffrey Snyder
Article

Abstract

A unidirectional solidification experiment by Bridgman method has been performed for the Pb14Bi28.8Te57.2 composition, which lies on the pseudo-binary PbTe–Bi2Te3 system, resulting in the formation of Widmanstätten precipitates of a ternary compound, most likely with the structure of PbBi2Te4 in the PbTe matrix. The formation of the precipitates is caused by the decrease of bismuth solubility in the PbTe phase with decreasing temperature. The PbTe-rich part of the PbTe–Bi2Te3 phase diagram was investigated from the compositional variations in the unidirectionally solidified sample and the diffusion couples. This proved that the solubility decreases with decreasing temperature: 15.6 ± 0.9 (583 °C) to \( 6. 2_{ - 1.7}^{ + 2.1} \) (450 °C) at.% Bi. The orientation relationship between the matrix and precipitates has been examined by electron backscatter diffraction technique; precipitation occurs on {111} habit planes in PbTe with orientation relationship (0001)precipitate//{111}PbTe and <11\( \overline{2} \)0>precipitate//<110>PbTe. The thermoelectric properties in PbTe with Widmanstätten precipitates as examined by the scanning Seebeck probe method is –46 ± 2 μVK−1.

References

  1. 1.
    Dresselhaus MS, Chen G, Tang MY, Yang R, Lee H, Wang D, Ren Z, Fleurial J-P, Gogna P (2007) Adv Mater 19:1043CrossRefGoogle Scholar
  2. 2.
    Medlin DL, Snyder GJ (2009) Curr Opin Colloid Interface Sci 14:226CrossRefGoogle Scholar
  3. 3.
    Kanatzidis MG (2010) Chem Mater 22:648CrossRefGoogle Scholar
  4. 4.
    Pei Y, Lensch-Falk J, Toberer ES, Medlin DL, Snyder GJ (2011) Adv Funct Mater 21:241CrossRefGoogle Scholar
  5. 5.
    Snyder GJ, Toberer ES (2008) Nat Mater 7:105CrossRefGoogle Scholar
  6. 6.
    Ikeda T, Collins LA, Ravi VA, Gascoin FS, Haile SM, Snyder GJ (2007) Chem Mater 19:763CrossRefGoogle Scholar
  7. 7.
    Ikeda T, Ravi VA, Collins LA, Haile SM, Snyder GJ (2007) J Electron Mater 36:716CrossRefGoogle Scholar
  8. 8.
    Yang F, Ikeda T, Snyder GJ, Dames C (2010) J Appl Phys 108:034310CrossRefGoogle Scholar
  9. 9.
    Ikeda T, Ravi VA, Snyder GJ (2009) Acta Mater 57:666CrossRefGoogle Scholar
  10. 10.
    Ikeda T, Snyder GJ (2010) Mater Res Soc Symp Proc 1267:DD06Google Scholar
  11. 11.
    Ikeda T, Marolf NJ, Bergum K, Toussaint MB, Heinz NA, Ravi VA, Snyder GJ (2011) Acta Mater. doi:10.1016/j.actamat.2011.01.006
  12. 12.
    Dames C, Chen G (2005) In: Rowe DM (ed) Thermoelectircs handbook: macro to nano. CRC Press, Boca ratonGoogle Scholar
  13. 13.
    Christakudi TA, Christakudis GC, Borissova LD (1995) Phys Status Solidi 190B:537CrossRefGoogle Scholar
  14. 14.
    Zhu P, Imai Y, Isoda Y, Shinohara Y, Jia X, Zoub G (2006) J Alloys Compd 420:233CrossRefGoogle Scholar
  15. 15.
    Hirai T, Takeda Y, Kurata K (1967) J Less Common Met 13:352CrossRefGoogle Scholar
  16. 16.
    Chami R, Brun G, Tédenac J-C, Maurin M (1983) Rev Chim Miner 20:305Google Scholar
  17. 17.
    Golovanova NS, Zlomanov VP, Tananaeva OI (1983) Inorg Mater 19:669Google Scholar
  18. 18.
    Shelimova LE, Karpinskii OG, Konstantinov PP, Avilov ES, Kretova MA, Zemskov VS (2006) Bi-Pb-Te Phase Diagram, ASM Alloy Phase Diagrams Center, P. Villars, editor-in-chief; H. Okamoto and K. Cenzual, section editors; http://www1.asminternational.org/AsmEnterprise/APD, ASM International, Materials Park, OH
  19. 19.
    Flewitt PEJ, Wild RK (1994) Physical methods for materials characterization. Institute of Physics Publishing, Bristol and PhiladelphiaGoogle Scholar
  20. 20.
    Bergum K, Ikeda T, Snyder GJ (2011) In preparationGoogle Scholar
  21. 21.
    Chen N, Gascoin F, Snyder GJ, Müller E, Karpinski G, Stiewe C (2005) Appl Phys Lett 87:171903CrossRefGoogle Scholar
  22. 22.
    Karpinskii OG, Shelimova LE, Avilov ES, Kretova MA, Zemskov VS (2002) Inorg Mater 38:17CrossRefGoogle Scholar
  23. 23.
    Noda Y, Masumoto K, Ohba S, Saito Y, Toriumi K, Iwata Y, Shibuya I (1987) Acta Crystallogr 43C:1443Google Scholar
  24. 24.
    Zhukowa TB, Zaslavskii AI (1971) Sov Phys Crystallogr 16:796Google Scholar
  25. 25.
    Shelimova LE, Karpinskii OG, Svechnikova TE, Avilov ES, Kretova MA, Zemskov VS (2004) Inorg Mater 40:1264CrossRefGoogle Scholar
  26. 26.
    Feutelais Y, Legendre B, Rodier N, Agafonov V (1993) Mater Res Bull 28:591CrossRefGoogle Scholar
  27. 27.
    Shelimova LE, Karpinskii OG, Konstantinov PP, Avilov ES, Kretova MA, Zemskov VS (2004) Inorg Mater 40:451CrossRefGoogle Scholar
  28. 28.
    Shannon RD (1976) Acta Crystallogr 32A:751Google Scholar
  29. 29.
    Ikeda T, Toberer ES, Ravi VA, Snyder GJ, Aoyagi S, Nishibori E, Sakata M (2009) Scripta Mater 60:321CrossRefGoogle Scholar
  30. 30.
    Sugar JD, Medlin DL (2010) J Mater Sci. doi:10.1007/s10853-010-4984-4
  31. 31.
    Medlin DL, Sugar JD (2010) Scripta Mater 62:379CrossRefGoogle Scholar
  32. 32.
    Heinz NA, Ikeda T, Snyder GJ, Medlin DL (2011) In preparationGoogle Scholar
  33. 33.
    Toberer ES, May AF, Snyder GJ (2010) Chem Mater 22:624CrossRefGoogle Scholar
  34. 34.
    Kim W, Zide J, Gossard A, Klenov D, Stemmer S, Shakouri A, Majumdar A (2006) Phys Rev Lett 96:045901CrossRefGoogle Scholar
  35. 35.
    Sootsman JR, Pcionek RJ, Kong H, Uher C, Kanatzidis MG (2006) Chem Mater 18:4993CrossRefGoogle Scholar
  36. 36.
    Jeng M-S, Yang R, Song D, Chen G (2008) J Heat Transf 130:042410CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Teruyuki Ikeda
    • 1
    • 2
  • Marcus B. Toussaint
    • 2
  • Kristin Bergum
    • 2
  • Shiho Iwanaga
    • 2
  • G. Jeffrey Snyder
    • 2
  1. 1.PRESTO, Japan Science and Technology AgencyKawaguchiJapan
  2. 2.Materials ScienceCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations