Advertisement

Journal of Materials Science

, Volume 46, Issue 19, pp 6301–6315 | Cite as

Synthesis of nanocomposites and amorphous alloys by mechanical alloying

  • C. SuryanarayanaEmail author
  • T. Klassen
  • E. Ivanov
Abbaschian Festschrift

Abstract

Mechanical alloying (MA) is a powder metallurgy processing technique that involves repeated cold welding, fracturing, and rewelding of powder particles in a high-energy ball mill. Due to the specific advantages offered by this technique, MA was used to synthesize a variety of advanced materials. This article presents two specific examples of synthesis of nanocomposites containing a high volume fraction of the reinforcement phase in Al and TiAl matrices. It was possible to uniformly disperse 50 vol% of nanometric (50 nm) Al2O3 in Al and achieve high strength and modulus of elasticity. Similarly, it was possible to disperse 60 vol% of Ti5Si3 phase in the γ-TiAl intermetallic. Fully consolidated material showed superplastic behavior at 950 °C and a strain rate of 4 × 10−5 s−1. Amorphous phases were produced by MA of blended elemental powder mixtures in several Fe-based compositions. From the systematic investigations carried out, it was possible to deduce the criteria for glass formation and understand the interesting phenomenon of mechanical crystallization. By conducting some controlled experiments, it was also possible to explain the mechanism of amorphization in these mechanically alloyed powder blends. Other examples of synthesis of advanced materials, e.g., photovoltaic materials and energetic materials, have also been briefly referred to. This article concludes with an indication of the topics that need special attention for further exploitation of these materials.

Keywords

Milling Amorphous Phase Metallic Glass Mechanical Alloy Amorphous Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The study reported here is supported by the US National Science Foundation under grants DMR-0314212 and DMR-0334544 and by the Office of Naval Research. The authors also acknowledge fruitful collaboration and useful discussions with Drs. Raj Vaidyanathan, Linan An, and Ruey-Hung Chen of the University of Central Florida, Orlando, USA, Professor Rüdiger Bormann of the Hamburg-Harburg Technical University, Hamburg, Germany, and Dr. S.J. Hong of Kongju National University, Kongju, South Korea. C.S. is also thankful to the experimental input from his graduate students—Pushkar Katiyar, Balaji Prabhu, Satyajeet Sharma, Devender Singh, and UMR Seelam, all from the University of Central Florida.

References

  1. 1.
    Bloor D, Brook RJ, Flemings MC, Mahajan S (eds) (1994) The encyclopedia of advanced materials. Pergamon, Oxford, p xiGoogle Scholar
  2. 2.
    Anantharaman TR, Suryanarayana C (1987) Rapidly solidified metals: a technological overview. Trans Tech Publications, Zurich, SwitzerlandGoogle Scholar
  3. 3.
    Liebermann HH (ed) (1993) Rapidly solidified alloys: processes, structures, properties, applications. Marcel Dekker, New York, NYGoogle Scholar
  4. 4.
    Suryanarayana C, Inoue A (2011) Bulk metallic glasses. CRC Press, Boca Raton, FLGoogle Scholar
  5. 5.
    Suryanarayana C, Jones H (1988) Int J Rapid Solidif 3:253Google Scholar
  6. 6.
    Trebin HR (ed) (2003) Quasicrystals: structure and physical properties. Wiley-VCH, WeinheimGoogle Scholar
  7. 7.
    Suryanarayana C (1995) Int Mater Rev 40:41Google Scholar
  8. 8.
    Gleiter H (2000) Acta Mater 48:1CrossRefGoogle Scholar
  9. 9.
    Suryanarayana C (2007) Adv Eng Mater 7:983CrossRefGoogle Scholar
  10. 10.
    Turnbull D (1981) Metall Trans A 12:695CrossRefGoogle Scholar
  11. 11.
    Suryanarayana C (ed) (1999) Non-equilibrium processing of materials. Pergamon, OxfordGoogle Scholar
  12. 12.
    Benjamin JS (1990) Metal Powder Report 45:122CrossRefGoogle Scholar
  13. 13.
    Suryanarayana C (2001) Prog Mater Sci 46:1CrossRefGoogle Scholar
  14. 14.
    Suryanarayana C (2004) Mechanical alloying and milling. Marcel Dekker, New York, NYCrossRefGoogle Scholar
  15. 15.
    Takacs L (2002) Prog Mater Sci 47:355CrossRefGoogle Scholar
  16. 16.
    Suryanarayana C (1995) Bibliography on mechanical alloying and milling. Cambridge International Science Publishing, Cambridge, UKGoogle Scholar
  17. 17.
    Clyne TW, Withers PJ (1995) An introduction to metal matrix composites. Cambridge University Press, Cambridge, UKGoogle Scholar
  18. 18.
    Kim HM, Kim TS, Suryanarayana C, Chun BS (2000) Mater Sci Eng A 287:59CrossRefGoogle Scholar
  19. 19.
    Son HT, Kim TS, Suryanarayana C, Chun BS (2003) Mater Sci Eng A 348:163CrossRefGoogle Scholar
  20. 20.
    Hong SJ, Kim HM, Huh D, Suryanarayana C, Chun BS (2003) Mater Sci Eng A 347:198CrossRefGoogle Scholar
  21. 21.
    Prabhu B, Suryanarayana C, An L, Vaidyanathan R (2006) Mater Sci Eng A 425:192CrossRefGoogle Scholar
  22. 22.
    Klassen T, Bohn R, Suryanarayana C, Fanta G, Bormann R (2003) In: Shaw L, Suryanarayana C, Mishra RS (eds) Processing and properties of structural nanomaterials. TMS, Warrendale, PA, p 93Google Scholar
  23. 23.
    Klassen T, Suryanarayana C, Bormann R (2008) Scripta Mater 59:455CrossRefGoogle Scholar
  24. 24.
    Suryanarayana C, Behn R, Klassen T, Bormann R (2010) (submitted)Google Scholar
  25. 25.
    Mohan P, Suryanarayana C, Desai V (2004) In: Bandyopadhyay S et al (eds) Nanomaterials: synthesis, characterisation, and application. Tata McGraw-Hill Publ. Co. Ltd., New Delhi, India, p 171Google Scholar
  26. 26.
    Suryanarayana C (2008) Mater Sci Eng A 479:23CrossRefGoogle Scholar
  27. 27.
    Al-Aqeeli N, Mendoza-Suarez G, Suryanarayana C, Drew RAL (2008) Mater Sci Eng A 480:392CrossRefGoogle Scholar
  28. 28.
    Wang Y, Suryanarayana C, An L (2005) J Am Ceram Soc 88:780CrossRefGoogle Scholar
  29. 29.
    Prabhu B (2005) MS Thesis, University of Central Florida, Orlando, USAGoogle Scholar
  30. 30.
    Nguyen TT, Suryanarayana C, Vaidyanathan R (2010) Unpublished results, University of Central Florida, Orlando, FL, USAGoogle Scholar
  31. 31.
    Froes FH, Suryanarayana C, Eliezer D (1992) J Mater Sci 27:5113. doi: 10.1007/BF02403806 CrossRefGoogle Scholar
  32. 32.
    Appel F, Wagner R (1998) Mater Sci Eng Reports R22:187CrossRefGoogle Scholar
  33. 33.
    Oehring M, Appel F, Pfullmann T, Bormann R (1995) Appl Phys Lett 66:941CrossRefGoogle Scholar
  34. 34.
    Bohn R, Klassen T, Bormann R (2001) Intermetallics 9:559CrossRefGoogle Scholar
  35. 35.
    Mishra RS, Lee WB, Mukherjee AK, Kim Y-W (1995) In: Kim Y-W, Wagner R, Yamaguchi M (eds) Gamma titanium aluminides. TMS, Warrendale, PA, p 571Google Scholar
  36. 36.
    Suryanarayana C (1984) Bull Mater Sci India 6:579CrossRefGoogle Scholar
  37. 37.
    Luborsky FE (ed) (1983) Amorphous metallic alloys. Butterworths, LondonGoogle Scholar
  38. 38.
    Inoue A (2000) Acta Mater 48:279CrossRefGoogle Scholar
  39. 39.
    Suryanarayana C, Seki IR, Inoue A (2009) J Non-Cryst Solids 355:355CrossRefGoogle Scholar
  40. 40.
    Suryanarayana C, Norton MG (1998) X-ray diffraction: a practical approach. Plenum, New York, NYGoogle Scholar
  41. 41.
    Massalski TB (ed) (1986) Binary alloy phase diagrams. ASM International, Materials Park, OHGoogle Scholar
  42. 42.
    de Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK (1988) Cohesion in metals. Transition metal alloys. North-Holland, AmsterdamGoogle Scholar
  43. 43.
    Sharma S, Vaidyanathan R, Suryanarayana C (2007) Appl Phys Lett 90:111915-1Google Scholar
  44. 44.
    Cho YS, Koch CC (1993) J Alloys Compd 194:287CrossRefGoogle Scholar
  45. 45.
    Froes FH, Suryanarayana C, Russell KC, Li CG (1995) Mater Sci Eng A 192/193:612Google Scholar
  46. 46.
    Klassen T, Oehring M, Bormann R (1997) Acta Mater 45:3935CrossRefGoogle Scholar
  47. 47.
    Stoloff NS, Davies RG (1968) Prog Mater Sci 13:1CrossRefGoogle Scholar
  48. 48.
    Turnbull D (1969) Contemp Phys 10:473CrossRefGoogle Scholar
  49. 49.
    Wong R, Merz MD (1976) Nature (London) 260:35CrossRefGoogle Scholar
  50. 50.
    Seelam UMR, Suryanarayana C (2006) Unpublished results, University of Central Florida, Orlando, FLGoogle Scholar
  51. 51.
    Nose M, Masumoto T (1980) Sci Rep Res Inst Tohoku Univ A 28:135Google Scholar
  52. 52.
    Köster U, Herold U (1981) In: Güntherodt HJ, Beck H (eds) Glassy metals I. Springer-Verlag, Berlin, p 225Google Scholar
  53. 53.
    Patil U, Hong SJ, Suryanarayana C (2005) J Alloys Compd 389:121CrossRefGoogle Scholar
  54. 54.
    Sharma S, Suryanarayana C (2007) J Appl Phys 102:083544-1Google Scholar
  55. 55.
    Sharma S, Suryanarayana C (2008) J Appl Phys 103:013504-1Google Scholar
  56. 56.
    Trudeau ML, Schulz R, Dussault D, Van Neste A (1990) Phys Rev Lett 64:99CrossRefGoogle Scholar
  57. 57.
    Suryanarayana C (1995) Intermetallics 3:153CrossRefGoogle Scholar
  58. 58.
    Blatter A, Von Allmen M (1985) Phys Rev Lett 54:2103CrossRefGoogle Scholar
  59. 59.
    Park ES, Kim DH (2006) Acta Mater 54:2597CrossRefGoogle Scholar
  60. 60.
    Ma E (2006) Prog Mater Sci 50:413CrossRefGoogle Scholar
  61. 61.
    Miedema AR, de Boer FR, Boom R (1997) CALPHAD 1:341CrossRefGoogle Scholar
  62. 62.
    Sharma S, Suryanarayana C (2008) Scripta Mater 58:508CrossRefGoogle Scholar
  63. 63.
    Egami T, Waseda Y (1984) J Non-Cryst Solids 64:113CrossRefGoogle Scholar
  64. 64.
    Yan ZJ, Li JF, He SR, Zhou YH (2003) Mater Res Bull 38:681CrossRefGoogle Scholar
  65. 65.
    Egami T (2003) J Non-Cryst Solids 317:30CrossRefGoogle Scholar
  66. 66.
    Miracle DB (2004) Nat Mater 3:697CrossRefGoogle Scholar
  67. 67.
    Miracle DB (2006) Acta Mater 54:4317CrossRefGoogle Scholar
  68. 68.
    Birkmire RW, Eser E (1997) Ann Rev Mater Sci 27:625CrossRefGoogle Scholar
  69. 69.
    Suryanarayana C, Ivanov E, Noufi R, Contreras MA, Moore JJ (1999) J Mater Res 14:377CrossRefGoogle Scholar
  70. 70.
    Ivanov E, Suryanarayana C (2008) In: 23rd European photovoltaic solar energy conference, September 1–5, 2008, Valencia, Spain, p 2513Google Scholar
  71. 71.
    Suryanarayana C, Ivanov E, Noufi R, Contreras MA, Moore JJ (1998) Thin Solid Films 332:340CrossRefGoogle Scholar
  72. 72.
    Dreizin EL (2000) Prog Energ Combust Sci 26:57CrossRefGoogle Scholar
  73. 73.
    Chen RH, Suryanarayana C, Chaos M (2006) Adv Eng Mater 8:563CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Mechanical, Materials and Aerospace EngineeringUniversity of Central FloridaOrlandoUSA
  2. 2.Department of Mechanical EngineeringKing Fahd University of Petroleum & MineralsDhahranSaudi Arabia
  3. 3.Institute of Materials TechnologyHelmut-Schmidt-UniversityHamburgGermany
  4. 4.Tosoh SMD, Inc.Grove CityUSA

Personalised recommendations