Journal of Materials Science

, Volume 46, Issue 11, pp 3716–3724 | Cite as

Controlled mechanochemically assisted synthesis of ZnO nanopowders in the presence of oxalic acid

  • A. Stanković
  • Lj. Veselinović
  • S. D. Škapin
  • S. Marković
  • D. UskokovićEmail author


In this study, the ZnO nanopowders were synthesized by mechanochemical processing with a successive thermal decomposition reaction. The initial reactants mixture of zinc chloride and oxalic acid was milled from 30 min to 4 h and thermally treated for 1 h at 450 °C. The influence of both, oxalic acid and the duration of milling, on the crystal structure, average crystallite size, average particle size, and the morphology of ZnO nanopowders were investigated. The qualitative analysis was performed using X-ray diffraction and Raman spectroscopy techniques. While the XRD analysis shows perfect long-range order and pure wurtzite structure of the synthesized ZnO powders, Raman spectroscopy indicates a different middle-range order; in addition, according to Raman spectra, it is found that lattice defects and impurities introduced in ZnO crystal structure depend on milling duration, in spite of applied thermal treatment. The particle size distribution was measured by laser diffraction, whereas the morphology of the powders was determined by scanning electron microscopy. Impurity contamination was studied using inductively coupled plasma analysis. The obtained results showed that the applied two-step method is appropriate for the synthesis of high crystalline ZnO nanopowders, with uniform spherical particles with diameter between 20 and 50 nm. Profound effect of aqueous solution of oxalic acid to prevent agglomeration of final product is presented.


Milling Oxalic Acid Mechanical Milling Wurtzite Crystal Structure Zinc Oxalate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Dr. M. Bokorov for SEM and Dr. B. Hadzić for Raman spectroscopy examinations. This study was supported by The Ministry of Science and Technological Development of the Republic of Serbia under grant no. III45004.


  1. 1.
    Look DC (2001) Mater Sci Eng B 80:383CrossRefGoogle Scholar
  2. 2.
    He R, Choi H (2002) Adv Funct Mater 12:323CrossRefGoogle Scholar
  3. 3.
    Huang MH, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R, Yang P (2001) Science 292:1897CrossRefGoogle Scholar
  4. 4.
    Shiono T, Yamamoto H, Nishino S (2004) Jpn J Appl Phys 43:4941CrossRefGoogle Scholar
  5. 5.
    Sato T, Tanigaki T, Suzuki H, Saito Y, Kido O, Kimura Y, Kaito C, Takeda A, Kaneko S (2003) J Cryst Growth 255:313CrossRefGoogle Scholar
  6. 6.
    Hochepied JF, Almeida de Pliveira AP (2004) Prog Colloid Polym Sci 125:68Google Scholar
  7. 7.
    Usui H (2009) Mater Lett 63:1489CrossRefGoogle Scholar
  8. 8.
    Demir MM, Munoz-Espi R, Lieberwirth I, Wagner G (2006) J Mater Chem 16:2940CrossRefGoogle Scholar
  9. 9.
    Tokumoto MS, Briois V, Samntilli CV (2003) J Sol-Gel Sci Technol 26:547CrossRefGoogle Scholar
  10. 10.
    Bhatte KD, Fujita S, Arai M, Pandit AB, Bhanage BM (2011) Ultrason Sonochem 18:54CrossRefGoogle Scholar
  11. 11.
    Zhang J, Sun L, Yin J, Su H, Liao C, Yan C (2002) Chem Mater 14:4172CrossRefGoogle Scholar
  12. 12.
    Senna M, Nakayama S (2009) J Alloys Comp 483:265CrossRefGoogle Scholar
  13. 13.
    Glushenkov AM, Zhang HZ, Zou J, Lu GQ, Chen Y (2007) Nanotechnology 18:175604CrossRefGoogle Scholar
  14. 14.
    Shen TD, Schwarz RB, Tompson JD (2005) Phys Rev B 72:014431CrossRefGoogle Scholar
  15. 15.
    Chen Y, Conway MJ, Fitzgerald JD (2003) Appl Phys A 76:633CrossRefGoogle Scholar
  16. 16.
    Kuga Y, Shirahige M, Fujimoto T, Ohira Y, Ueda A (2004) Carbon 42:293CrossRefGoogle Scholar
  17. 17.
    Fah CP, Xue J, Wang J (2002) J Am Ceram Soc 85:273CrossRefGoogle Scholar
  18. 18.
    Baranov AN, Panin GN, Kang TW, Oh Y (2005) Nanotechnology 16:1918CrossRefGoogle Scholar
  19. 19.
    Tsuzuki T, McCormick PG (2001) Scr Mater 44:1731CrossRefGoogle Scholar
  20. 20.
    Kanade KG, Kale BB, Aiyer RC, Das BK (2006) Mater Res Bull 41:590CrossRefGoogle Scholar
  21. 21.
    Adair JH, Shrout TR, Messing GL, Pecora TM, Mandanas MM (2002) WO Patent 0230572Google Scholar
  22. 22.
    Li YX, Chen WF, Zhou XZ, Gu ZY, Chen CM (2005) Mater Lett 59:48CrossRefGoogle Scholar
  23. 23.
    Ding J, Tsuzuki T, McCormick PG (1996) J Am Ceram Soc 79:2956CrossRefGoogle Scholar
  24. 24.
    Tsuzuki T, McCormick PG (1997) Appl Phys A 65:607CrossRefGoogle Scholar
  25. 25.
    McCormick PG, Tsuzuki T (2003) US Patent 006503475Google Scholar
  26. 26.
    Aghababazadeh R, Mazinini B, Mirhabibi A, Tamizifar M (2006) J Phys Conf Ser 26:312CrossRefGoogle Scholar
  27. 27.
    Shen L, Bao N, Yanagisawa K (2003) Chem Lett 32:826CrossRefGoogle Scholar
  28. 28.
    Čeliković A, Kandić Lj, Zdujić M, Uskoković D (2007) Mater Sci Forum 555:279CrossRefGoogle Scholar
  29. 29.
    Reddy BSB, Das K, Das S (2007) J Mater Sci 42:9366. doi: 10.1007/s10853-007-1827-z CrossRefGoogle Scholar
  30. 30.
    Shen L, Bao N, Yanagisawa K, Domen K, Guptal A, Grimes CA (2006) Nanotechnology 17:5117CrossRefGoogle Scholar
  31. 31.
    Małecka B, Droždž-Cieśla E, Małecki A (2004) Thermochim Acta 423:13CrossRefGoogle Scholar
  32. 32.
    Klug HP, Alexander LE (1954) X-ray diffraction procedures for polycrystalline and amorphous materials, 1st edn. Wiley, New YorkGoogle Scholar
  33. 33.
    Pardeshi SK, Patil AB (2009) J Mol Catal A Chem 308:32CrossRefGoogle Scholar
  34. 34.
    Cuscó R, Alarcón-Lladó E, Ibáñez J, Artús L, Jiménez J, Wang B, Callahan MJ (2007) Phys Rev B 75:165202CrossRefGoogle Scholar
  35. 35.
    Lin KF, Cheng HM, Hsu HC, Hsieh WF (2006) Appl Phys Lett 88:263117CrossRefGoogle Scholar
  36. 36.
    Kaschner A, Haboeck U, Strassburg M, Strassburg M, Kaczmarczyk G, Hoffmann A, Thomsen C (2002) Appl Phys Lett 80:1909CrossRefGoogle Scholar
  37. 37.
    Zhao J, Yan X, Yang Y, Huang Y, Zhang Y (2010) Mater Lett 64:569CrossRefGoogle Scholar
  38. 38.
    Giri PK, Bhattacharyya S, Singh DK, Kesavamoorthy R, Panigrahi BK, Nair KM (2007) J Appl Phys 102:093515CrossRefGoogle Scholar
  39. 39.
    Wahab R, Ansari SG, Kim YS, Seo HK, Kim GS, Khang G, Shin HS (2007) Mater Res Bull 42:1640CrossRefGoogle Scholar
  40. 40.
    Avvakumov E, Senna M, Kosova N (2002) Soft mechanochemical synthesis. Kulwer Academic Publishers, New YorkGoogle Scholar
  41. 41.
    Adair JH, Constantino AS (2003) US Patent 006514894Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • A. Stanković
    • 1
  • Lj. Veselinović
    • 1
  • S. D. Škapin
    • 2
  • S. Marković
    • 1
  • D. Uskoković
    • 1
    Email author
  1. 1.Institute of Technical Sciences of the Serbian Academy of Sciences and ArtsBelgradeSerbia
  2. 2.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations