Journal of Materials Science

, Volume 46, Issue 12, pp 4157–4161 | Cite as

Aberration corrected scanning transmission electron microscopy and electron energy loss spectroscopy studies of epitaxial Fe/MgO/(001)Ge heterostructures

  • Jaume Gazquez
  • Maria Varela
  • Daniela Petti
  • Matteo Cantoni
  • Christian Rinaldi
  • Stefano Brivio
  • Riccardo Bertacco
IIB 2010

Abstract

Aberration correction in the scanning transmission electron microscope combined with electron energy loss spectroscopy allows simultaneous mapping of the structure, the chemistry and even the electronic properties of materials in one single experiment with spatial resolutions of the order of one Ångström. Here the authors will apply these techniques to the characterization of epitaxial Fe/MgO/(001)Ge and interfaces with possible applications for tunneling junctions, and the authors will show that epitaxial MgO films can be grown on a (001)Ge substrates by molecular beam epitaxy and how it is possible to map the chemistry of interfaces with atomic resolution.

References

  1. 1.
    Zhou Y, Ogawa M, Han X, Wang KL (2008) Alleviation of fermi-level pinning effect on metal/germanium interface by insertion of an ultrathin aluminum oxide. Appl Phys Lett 93:202105CrossRefGoogle Scholar
  2. 2.
    Zhou Y, Ogawa M, Bao M, Wei H, Kawakami RK, Wang KL (2009) Engineering of tunnel junctions for prospective spin injection in germanium. Appl Phys Lett 94:242104CrossRefGoogle Scholar
  3. 3.
    Martinez Boubeta C, Navarro E, Cebollada A, Briones F, Peiro F, Cornet A (2001) Epitaxial Fe/MgO heterostructures on GaAs (001). J Cryst Growth 226:223CrossRefGoogle Scholar
  4. 4.
    Butler WH, Zhang XG, Schuthess TC, MacLaren JM (2001) Spin-dependent tunneling conductance of Fe|MgO|Fe sandwiches. Phys Rev B 63:054416CrossRefGoogle Scholar
  5. 5.
    Ganichev SD, Danilov SN, Bel’kov VV, Giglberger S, Tarasenko SA, Ivchenko EL, Weiss D, Jantsch W, Schäffler F, Gruber D, Prettl W (2007) Pure spin currents induced by spin-dependent scattering processes in SiGe quantum well structures. Phys Rev B 75:155317CrossRefGoogle Scholar
  6. 6.
    Browning ND, Chisholm MF, Pennycook SJ (1993) Atomic-resolution chemical analysis using a scanning transmission electron microscope. Nature 366:143CrossRefGoogle Scholar
  7. 7.
    Nellist PD, Pennycook SJ (1998) Subangstrom resolution by underfocussed incoherent transmission electron microscopy. Phys Rev Lett 81:4156CrossRefGoogle Scholar
  8. 8.
    Nellist PD, Chisholm MF, Dellby N, Krivanek OL, Murfitt MF, Szilagyi ZS, Lupini AR, Borisevich AY, Sides WH, Pennycook SJ (2004) Direct sub-angstrom imaging of a crystal lattice. Science 305:1741CrossRefGoogle Scholar
  9. 9.
    Jia CL, Lentzen M, Urban K (2004) High-resolution transmission electron microscopy using negative spherical aberration. Microsc Microanal 10:174CrossRefGoogle Scholar
  10. 10.
    Bosman M, Keast VJ, Garcia-Muñoz JL, D’Alfonso AJ, Findlay SD, Allen LJ (2007) Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99:086102CrossRefGoogle Scholar
  11. 11.
    Kimoto K, Asaka T, Nagai T, Saito M, Matsui Y, Ishizuka K (2007) Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450:702CrossRefGoogle Scholar
  12. 12.
    Varela M, Findlay SD, Lupini AR, Christen HM, Borisevich AY, Dellby N, Krivanek OL, Nellist PD, Oxley MP, Allen LJ, Pennycook SJ (2004) Spectroscopic imaging of single atoms within a bulk solid. Phys Rev Lett 92:095502CrossRefGoogle Scholar
  13. 13.
    Varela M, Lupini AR, Benthem K, Borisevich AY, Chisholm MF, Shibata N, Abe E, Pennycook SJ (2005) Materials characterization in the aberration-corrected scanning transmission electron microscope. Ann Rev Mater Res 35:539CrossRefGoogle Scholar
  14. 14.
    Petti D, Cantini M, Rinaldi C, Brivio S, Bertacco R, Gazquez J, Varela M (2010) Sharp Fe/MgO/Ge(001) epitaxial heterostructures for tunneling junctions. (in preparation)Google Scholar
  15. 15.
    Vassent JL, Dynna M, Marty A, Gilles B, Patrat G (1996) A study of growth and the relaxation of elastic strain in MgO on Fe(001). J Appl Phys 80(10):5727CrossRefGoogle Scholar
  16. 16.
    Muller DA, Fitting-Kourkoutis L, Murfitt M, Song JH, Wang HY, Silcox J, Dellby N, Krivanek OL (2008) Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319:1073CrossRefGoogle Scholar
  17. 17.
    Egerton RF (1996) Electron energy loss in the electron microscope, 2nd edn. Plenum, New YorkGoogle Scholar
  18. 18.
    Oxley MP, Varela M, Pennycook TJ, van Benthem K, Findlay SD, D’Alfonso AJ, Allen LJ, Pennycook SJ (2007) Interpreting atomic-resolution spectroscopic images. Phys Rev B 76:064303CrossRefGoogle Scholar
  19. 19.
    Colliex C, Manoubi T, Ortiz C (1991) Electron-energy-loss-spectroscopy near-edge fine structures in the iron-oxygen system. Phys Rev B 44:11402CrossRefGoogle Scholar
  20. 20.
    Serin V, Andrieu S, Serra R, Bonnel F, Tiusan C, Calmels L, Varela M, Pennycook SJ, Snoeck E, Walls M, Colliex C (2009) TEM and EELS measurements of interface roughness in epitaxial Fe/MgO/Fe magnetic tunnel junctions. Phys Rev B 79:144413CrossRefGoogle Scholar
  21. 21.
    Kurata H, Colliex C (1993) Electron-energy-loss core-edge structures in manganese oxides. Phys Rev B 48:2102CrossRefGoogle Scholar
  22. 22.
    Riedl T, Gemming T, Runner W, Acker J, Wetzig K (2007) Determination of manganese valency in La1−xSrxMnO3 using ELNES in the (S)TEM. Micron 38:224CrossRefGoogle Scholar
  23. 23.
    Waddington WG, Rez P, Grant IP, Humphreys CJ (1986) White lines in the L2, 3 electron-energy-loss and X-ray absorption spectra of 3d transition metals. Phys Rev B 34:1467CrossRefGoogle Scholar
  24. 24.
    Varela M, Oxley MP, Luo W, Tao J, Watanabe M, Lupini AR, Pantelides ST, Pennycok SJ (2009) Atomic-resolution imaging of oxidation states in manganites. Phys Rev B 79:085117CrossRefGoogle Scholar
  25. 25.
    Miyokawa K, Saito S, Katayama T, Saito T, Kamino T, Hanashima K, Suzuki Y, Mamiya K, Koide T, Yuasa S (2005) X-ray absorption and X-ray magnetic circular dichroism studies of a monatomic Fe(001) layer facing a single-crystalline MgO(001) tunnel barrier. Jpn J Appl Phys Part 2 44:L9CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2011

Authors and Affiliations

  • Jaume Gazquez
    • 1
    • 2
  • Maria Varela
    • 1
  • Daniela Petti
    • 3
  • Matteo Cantoni
    • 3
  • Christian Rinaldi
    • 3
  • Stefano Brivio
    • 3
  • Riccardo Bertacco
    • 3
  1. 1.Oak Ridge National LaboratoryOak RidgeUSA
  2. 2.Department Física Aplicada IIIUniversity Complutense of MadridMadridSpain
  3. 3.Dipartimento di Fisica—Politecnico di MilanoL-NESSComoItaly

Personalised recommendations