Advertisement

Journal of Materials Science

, Volume 46, Issue 12, pp 4296–4301 | Cite as

Synthesis of non-equilibrium phases in immiscible metals mechanically mixed by high pressure torsion

  • Tatsuya Miyazaki
  • Daisuke Terada
  • Yoji Miyajima
  • Challapalli Suryanarayana
  • Reiko Murao
  • Yoshihiko Yokoyama
  • Kazumasa Sugiyama
  • Minoru Umemoto
  • Yoshikazu Todaka
  • Nobuhiro Tsuji
IIB 2010

Abstract

The structural changes in mechanically mixed metals of immiscible combinations of elements caused by bulk mechanical alloying (MA) through the use of high pressure torsion (HPT) were investigated in Ag–Ni and Nb–Zr systems. There was no alloying between Ag and Ni on atomic scale even after 100 rotations of HPT. On the other hand, the β-Zr phase started to appear after HPT 2 rotations in the Nb–Zr system, even though β-Zr is a high temperature phase. Further, Nb and Zr were completely mixed to form a bcc structured single phase after HPT 100 rotations. The sequence of alloying in the Nb–Zr system during HPT was discussed. These results clearly suggest that non-equilibrium phases can form in the Nb–Zr system by bulk MA by the use of HPT.

Keywords

Mechanical Alloy Select Area Electron Diffraction Accumulative Roll Bonding High Pressure Torsion Supersaturated Solid Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This study was financially supported by the Grant-in-Aid for Exploratory Research (contract No. 21656188) as well as that for Innovative Area, “Bulk Nanostructured Metals” (contract No. 2201) through MEXT, Japan.

References

  1. 1.
    Benjamin JS (1976) Sci Am 234:40CrossRefGoogle Scholar
  2. 2.
    El-Eskandarany MS, Saida J, Inoue A (2002) Acta Mater 50:2725CrossRefGoogle Scholar
  3. 3.
    Liu ZG, Guo JT, Hu ZQ (1995) Mater Sci Eng A 192(193):577Google Scholar
  4. 4.
    Jiang JZ, Gente C, Bormann R (1998) Mater Sci Eng A242:268Google Scholar
  5. 5.
    Suryanarayana C (2001) Prog Mater Sci 46:1CrossRefGoogle Scholar
  6. 6.
    Suryanarayana C (2004) Mechanical alloying and milling. Marcel Dekker, New YorkCrossRefGoogle Scholar
  7. 7.
    Ma E (2005) Prog Mater Sci 50:413CrossRefGoogle Scholar
  8. 8.
    Saito Y, Utsunomiya H, Tsuji N, Sakai T (1999) Acta Mater 47:579CrossRefGoogle Scholar
  9. 9.
    Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Prog Mater Sci 45:103CrossRefGoogle Scholar
  10. 10.
    Sun YF, Todaka Y, Umemoto M, Tsuji N (2008) J Mater Sci 43:7457. doi: 10.1007/s10853-008-2634-x CrossRefGoogle Scholar
  11. 11.
    Sun YF, Nakamura T, Todaka Y, Umemoto M, Tsuji N (2009) Intermetallics 17:256CrossRefGoogle Scholar
  12. 12.
    de Boer FR, Boom R, Mattens WCM, Miedema AR, Niessen AK (1989) Cohesion in metals transition metal alloys. North-Holland Physics Publishing, AmsterdamGoogle Scholar
  13. 13.
    Singleton M, Nash P (1991). In: Nash P (ed) Phase diagrams of binary nickel alloys. ASM international, Materials Park, OH, pp 1–3Google Scholar
  14. 14.
    Okamoto H (1992) J Phase Equilibria 13(5):577CrossRefGoogle Scholar
  15. 15.
    German VN, Bakanova AA, Tarasova LA, Sumulov YuN (1970) Sov Phys Solid State 12:490Google Scholar
  16. 16.
    Xia H, Duclos SJ, Ruoff AL, Vohra YK (1990) Phys Rev Lett 64:204CrossRefGoogle Scholar
  17. 17.
    Pérez-Prado MT, Zhilyaev AP (2009) Phys Rev Lett 102:175504CrossRefGoogle Scholar
  18. 18.
    Pérez-Prado MT, Sharafutdinov A, Zhilyaev AP (2010) Mater Lett 64:211CrossRefGoogle Scholar
  19. 19.
    Zhilyaev AP, Gálvez F, Sharafutdinov A, Pérez-Prado MT (2010) Mater Sci Eng A527:3918Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Tatsuya Miyazaki
    • 1
  • Daisuke Terada
    • 1
  • Yoji Miyajima
    • 2
  • Challapalli Suryanarayana
    • 3
  • Reiko Murao
    • 4
  • Yoshihiko Yokoyama
    • 4
  • Kazumasa Sugiyama
    • 4
  • Minoru Umemoto
    • 5
  • Yoshikazu Todaka
    • 5
  • Nobuhiro Tsuji
    • 1
  1. 1.Department of Materials Science and Engineering, Graduate School of EngineeringKyoto UniversityKyotoJapan
  2. 2.Department of Materials Science and EngineeringTokyo Institute of TechnologyYokohamaJapan
  3. 3.Department of Mechanical, Materials and Aerospace EngineeringUniversity of Central FloridaOrlandoUSA
  4. 4.Institute for Materials ResearchTohoku UniversitySendaiJapan
  5. 5.Department of Production Systems EngineeringToyohashi University of TechnologyToyohashiJapan

Personalised recommendations