Journal of Materials Science

, Volume 46, Issue 9, pp 3186–3190

Compressive stress-electrical conductivity characteristics of multiwall carbon nanotube networks



A network of entangled multiwall carbon nanotubes is presented as a conductor whose conductivity is sensitive to compressive stress both in the course of monotonic stress growth and when loading/unloading cycles are imposed. The testing has shown as much as 100% network conductivity increase at the maximum applied stress. It indicates favorable properties of multiwall carbon nanotube networks for their use as stress-electric signal transducers. To model the conductivity-stress dependence, it is hypothesized that compression increases local contact forces between nanotubes, which results in more conductive contacts. The lack of detailed knowledge of the mechanism as well as an unclear shift from individual contacts to the whole network conductance behavior is circumvented with a statistical approach. In this respect, good data representation is reached using Weibull distribution for the description of distribution of nanotube contact resistance.


  1. 1.
    Thostenson ET, Li CY, Chou TW (2005) Compos Sci Technol 65:491CrossRefGoogle Scholar
  2. 2.
    Cao Q, Rogers JA (2009) Adv Mater 21:29CrossRefGoogle Scholar
  3. 3.
    Walters DA, Casavant MJ, Quin XC, Huffman CB, Boul PJ, Ericson LM, Haroz EH, O’Connel MJ, Smith K, Colbert DT, Smalley RE (2001) Chem Phys Lett 338:14CrossRefGoogle Scholar
  4. 4.
    Poquillon D, Viguier B, Andrieu E (2005) J Mat Sci 40:5963. doi:10.1007/s10853-005-5070-1 CrossRefGoogle Scholar
  5. 5.
    Allaoui A, Hoa SV, Evesque P, Bai J (2009) Scripta Mater 6:628Google Scholar
  6. 6.
    Kukowecz A, Smajda R, Oze M, Schaefer B, Haspel H, Konya Z, Kiricsi I (2008) Phys Stat Sol 245:2331CrossRefGoogle Scholar
  7. 7.
    Simsek Y, Ozyuzer L, Seyham AT, Tanoglu M, Schulte K (2007) J Mater Sci 42:9689. doi:10.1007/s10853-007-1943-9 CrossRefGoogle Scholar
  8. 8.
    Chang L, Friedrich K, Ye L, Toro P (2009) J Mater Sci 44:4003. doi:10.1007/s10853-009-3551-3 CrossRefGoogle Scholar
  9. 9.
    Ham HT, Choi YS, Chung IJ (2005) Colloid Interf Sci 286:216CrossRefGoogle Scholar
  10. 10.
    Kimmer D, Slobodian P, Petras D, Zatloukal M, Olejník R, Saha P (2009) J Appl Polym Sci 111:2711CrossRefGoogle Scholar
  11. 11.
    Wang D, Song PC, Liu CH, Wu W, Fan SS (2008) Nanotechnology 19(7):1Google Scholar
  12. 12.
    Ashrafi B, Guan JW, Mirjalili V, Hubert P, Simard B, Johnston A (2010) COMPOS PART A-APPL S 41(9):1184CrossRefGoogle Scholar
  13. 13.
    Xie XL, Mai YW, Zhou XP (2005) Mater Sci Eng 49:89CrossRefGoogle Scholar
  14. 14.
    Yaglioglu O, Hart AJ, Martens R, Slocum AH (2006) Rev Sci Instrum 77:095105/1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Polymer Centre, Faculty of TechnologyTomas Bata University in ZlínZlínCzech Republic
  2. 2.Institute of HydrodynamicsAcademy of SciencesPrague 6Czech Republic

Personalised recommendations