Journal of Materials Science

, Volume 46, Issue 7, pp 2009–2017 | Cite as

Evolution of the microstructure and mechanical properties of eutectic Fe30Ni20Mn35Al15

Article

Abstract

The microstructure of the eutectic alloy Fe30Ni20Mn35Al15 (in at.%) was modified by cooling at different rates from 1623 K, i.e., above the eutectic temperature. The lamellar spacing decreased with increasing cooling rate, and in water-quenched specimens lamellae widths of ~100 nm were obtained. The orientation relationship between the fcc and B2 lamellae was found to be sensitive to the cooling rate. In a drop-cast alloy the Kurdjumov–Sachs orientation relationship dominated, whereas the orientation relationship in an arc-melted alloy with a faster cooling rate was \( {\text{fcc}}\left( {\bar{1}12} \right)//{\text{B2}}\left( {0 1 1} \right);\;{\text{fcc}}\left[ {1\bar{1}1} \right]//{\text{B2 }}\left[ {1\bar{1}1} \right] \,{\text{and}}\,{\text{fcc}}\left( {0\bar{1}1} \right)//{\text{B2}}\left( {00 1} \right);{\text{ fcc}}\left[ {0 1 1} \right]//{\text{B2}}\left[ {\bar{1}\bar{1}0} \right] \). The hardness increased with microstructural refinement, obeying a Hall–Petch-type relationship. The strength of the alloy decreased significantly above 600 K due to softening of the B2 phase.

References

  1. 1.
    Liao YF, Baker I (2008) Mater Charact 59(11):1546CrossRefGoogle Scholar
  2. 2.
    Liao Y, Baker I (2010) Mater Sci Eng A (submitted)Google Scholar
  3. 3.
    Liu CT, Maziasz PJ (1998) Intermetallics 6(7–8):653CrossRefGoogle Scholar
  4. 4.
    Ramanujan RV, Maziasz PJ, Liu CT (1996) Acta Mater 44(7):2611CrossRefGoogle Scholar
  5. 5.
    Maruyama K, Yamada N, Sato H (2001) Mater Sci Eng A 319:360CrossRefGoogle Scholar
  6. 6.
    Huang L, Liaw PK, Liu CT (2007) Metall Mater Trans A 38A(13):2290CrossRefGoogle Scholar
  7. 7.
    Umakoshi Y, Nakano T, Yamane T (1992) Mater Sci Eng A 152(1–2):81Google Scholar
  8. 8.
    Liu CT, Schneibel JH, Maziasz PJ, Wright JL, Easton DS (1996) Intermetallics 4(6):429CrossRefGoogle Scholar
  9. 9.
    Umeda H, Kishida K, Inui H, Yamaguchi M (1997) Mater Sci Eng A 240:336CrossRefGoogle Scholar
  10. 10.
    Wittmann M, Baker I, Munroe PR (2004) Philos Mag 84(29):3169CrossRefGoogle Scholar
  11. 11.
    Bain EC, Dunkirk NY (1924) Trans Am Inst Min Metall Petrol Eng 70:22Google Scholar
  12. 12.
    Chen SK, Wan CM, Byrne JG (1990) Scr Metall Mater 24(11):2139CrossRefGoogle Scholar
  13. 13.
    Baker I, Gaydosh DJ (1987) Mater Sci Eng 96:147CrossRefGoogle Scholar
  14. 14.
    Ball A, Smallman RE (1966) Acta Metall Mater 14(10):1349CrossRefGoogle Scholar
  15. 15.
    Chadwick GA (1963) Prog Mater Sci 12(2):99CrossRefGoogle Scholar
  16. 16.
    Porter DA, Easterling KE (1992) Phase transformation in metals and alloys. CRC Press, New YorkGoogle Scholar
  17. 17.
    Bei H, George EP (2005) Acta Mater 53(1):69CrossRefGoogle Scholar
  18. 18.
    Kaiden H, Durbin SD, Yoshikawa A, Lee JH, Sugiyama K, Fukuda T (2002) J Alloy Compd 336(1–2):259CrossRefGoogle Scholar
  19. 19.
    Croker MN, Mcparlan M, Baragar D, Smith RW (1975) J Cryst Growth 29(1):85CrossRefGoogle Scholar
  20. 20.
    Thall BM, Chalmers B (1950) J I Met 77(1):79Google Scholar
  21. 21.
    Elwazri AM, Wanjara P, Yue S (2005) Mater Sci Eng A 404(1–2):91Google Scholar
  22. 22.
    Dollar M, Bernstein IM, Thompson AW (1988) Acta Metall Mater 36(2):311CrossRefGoogle Scholar
  23. 23.
    Ray KK, Mondal D (1991) Acta Metall Mater 39(10):2201CrossRefGoogle Scholar
  24. 24.
    He YL, Godet S, Jonas JJ (2005) Acta Mater 53(4):1179CrossRefGoogle Scholar
  25. 25.
    Smith E, Barnby JT (1967) Metal Sci J 1:56CrossRefGoogle Scholar
  26. 26.
    Stroh AN (1954) Proc R Soc Lond A 223:404CrossRefGoogle Scholar
  27. 27.
    Misra A, Gibala R (1999) Metall Mater Trans A 30(4):991CrossRefGoogle Scholar
  28. 28.
    Shen Z, Wagoner RH, Clark WAT (1988) Acta Metall Mater 36(12):3231CrossRefGoogle Scholar
  29. 29.
    Misra A, Gibala R (2000) Intermetallics 8(9–11):1025CrossRefGoogle Scholar
  30. 30.
    Hertzberg RW (1967) Composite materials formed by the directional solidification of eutectic alloys. Addison-Wesley, LondonGoogle Scholar
  31. 31.
    Fuchs GE (1997) Metall Mater Trans A 28(12):2543CrossRefGoogle Scholar
  32. 32.
    Baker I (1995) Mater Sci Eng A 193:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Thayer School of EngineeringDartmouth CollegeHanoverUSA
  2. 2.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations