Journal of Materials Science

, Volume 46, Issue 8, pp 2422–2430 | Cite as

Effect of the microstructure on the intercalation and exfoliation behaviour of graphite

  • Olga Khvostikova
  • Helmut HermannEmail author
  • Horst Wendrock
  • Thomas Gemming
  • Jürgen Thomas
  • Helmut Ehrenberg


The process of the preparation of graphitic nanoplatelets via chemical intercalation and thermal exfoliation of graphite was considered. The dependence of the properties of the final product on the microstructure of the raw material and on different process parameters was analyzed. It is shown that the microstructure of the raw material has considerable influence on the structural transformations during the different preparation steps. The observed differences can be understood assuming that intercalation is initiated at the edges of graphite crystallites by the formation of intercalate nuclei. Essential differences of the nucleation time appear for unequal types of microstructure and give rise to different intercalation states. It is also shown that the sub-process of washing and drying the samples after intercalation is most critical and has significant influence on the characteristics of the final products. The results suggest that graphite fibres with sub-micron diameter and orientation of the crystallographic c-axis along the fibre axis will be particularly favourable for the preparation of graphitic nanoplatelets.


Highly Orient Pyrolytic Graphite Graphite Flake Graphitic Sheet Stage Number Intercalation Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support by EnBW Energie Baden-Württemberg AG is gratefully acknowledged. This study has also benefited from support from the European Union and the Free State of Saxony within the European Centre for Emerging Materials and Processes Dresden (ECEMP, grant no. 13858/2379).


  1. 1.
    Chung DDL (1987) J Mater Sci 22:4190. doi: 10.1007/BF0113 CrossRefGoogle Scholar
  2. 2.
    Celzard A, Marêché JF, Furdin G (2005) Progr Mater Sci 50:93CrossRefGoogle Scholar
  3. 3.
    Konno H, Morishita T, Sato S, Habazaki H, Inagaki M (2005) Carbon 43:1110CrossRefGoogle Scholar
  4. 4.
    Konno H, Morishita T, Wan C, Kasashima T, Habazaki H, Inagaki M (2007) Carbon 45:477CrossRefGoogle Scholar
  5. 5.
    Zou L, Kang F, Zheng YP, Shen W (2009) Electrochim Acta 54:3930CrossRefGoogle Scholar
  6. 6.
    Wan C, Azumi K, Konno H (2007) Electrochim Acta 52:3061CrossRefGoogle Scholar
  7. 7.
    Mitra S, Lokesh KS, Sampath S (2008) J Power Sources 185:1544CrossRefGoogle Scholar
  8. 8.
    Kalaitzidou K, Fukishima H, Drzal LT (2007) Carbon 45:1445CrossRefGoogle Scholar
  9. 9.
    Debelak B, Lafdi K (2007) Carbon 45:1727CrossRefGoogle Scholar
  10. 10.
    Ganguli S, Roy AK, Anderson DP (2008) Carbon 46:806CrossRefGoogle Scholar
  11. 11.
    Afanasov IM, Morozov VA, Kepman AV, Ionov SG, Seleznev AN, Van Tendeloo G, Avdeev VV (2009) Carbon 47:263CrossRefGoogle Scholar
  12. 12.
    Luzi W (1891) GB patent 9922Google Scholar
  13. 13.
    Boehm HP, Stumpp E (2007) Carbon 45:1381CrossRefGoogle Scholar
  14. 14.
    Oh WC, Bae NK, Choi YJ, Ko YS (1995) Carbon 33:323CrossRefGoogle Scholar
  15. 15.
    Kang F, Zheng YP, Wang HN, Nishi Y, Inagaki M (2002) Carbon 40:1575CrossRefGoogle Scholar
  16. 16.
    Inagaki M, Tashiro R, Washino Y, Toyoda M (2004) J Phys Chem Solids 65:133CrossRefGoogle Scholar
  17. 17.
    Tryba B, Morawski AW, Inagaki M (2005) Carbon 43:2417CrossRefGoogle Scholar
  18. 18.
    Vieira F, Cisneros I, Rosa NG, Trindade GM, Mohallem NDS (2006) Carbon 44:2590CrossRefGoogle Scholar
  19. 19.
    Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) J Mater Chem 16:155CrossRefGoogle Scholar
  20. 20.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Carbon 45:1558CrossRefGoogle Scholar
  21. 21.
    Li J, Liu Q, Da H (2007) Mater Lett 61:1832CrossRefGoogle Scholar
  22. 22.
    Osváth Z, Darabont A, Nemes-Incze P, Horváth E, Horváth ZE, Biró LP (2007) Carbon 45:3022CrossRefGoogle Scholar
  23. 23.
    Wei T, Fan Z, Luo G, Zheng C, Xie D (2009) Carbon 47:337CrossRefGoogle Scholar
  24. 24.
    Hérold A (1979) In: Levy F (ed) Intercalated layered materials, vol 6. D Reidel Publishing Company, Dordrecht, p 323Google Scholar
  25. 25.
    Shioyama H (2000) Synth Met 114:1CrossRefGoogle Scholar
  26. 26.
    Rüdorff W, Hoffmann U (1938) Z Anorg Allgem Chem 238:1CrossRefGoogle Scholar
  27. 27.
    Rüdorff W (1940) Z Phys Chem B 45:42Google Scholar
  28. 28.
    Brodie BC (1845) Annales de chimie et de physique 45:351Google Scholar
  29. 29.
    Wiberg N (2007) Holleman-Wiberg Lehrbuch der Anorganischen Chemie. Walter de Gruyter, BerlinGoogle Scholar
  30. 30.
    Dresselhaus MS, Dresselhaus G (2002) Adv Phys 51:1Google Scholar
  31. 31.
    Dowell MB, Badorrek DS (1978) Carbon 16:241CrossRefGoogle Scholar
  32. 32.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Science 306:666CrossRefGoogle Scholar
  33. 33.
    Geim AK, Novoselov KS (2007) Nat Mater 6:183CrossRefGoogle Scholar
  34. 34.
    Oostinga JB, Heersche HB, Liu X, Morpurgo AF, Vandersypen LMK (2008) Nat Mater 7:151CrossRefGoogle Scholar
  35. 35.
    Ritschel M, Leonhardt A, Helbig J, Knöchel D (2010) In: Proceedings of the 8th Int. Nanotechnology Symposium, Dresden, July 6–7, 2010Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Olga Khvostikova
    • 1
  • Helmut Hermann
    • 1
    Email author
  • Horst Wendrock
    • 1
  • Thomas Gemming
    • 1
  • Jürgen Thomas
    • 1
  • Helmut Ehrenberg
    • 1
  1. 1.IFW Dresden, Institute for Complex MaterialsDresdenGermany

Personalised recommendations