Advertisement

Journal of Materials Science

, Volume 46, Issue 7, pp 2155–2161 | Cite as

Microwave assisted synthesis of barium zirconium titanate nanopowders

  • V. Vinothini
  • B. Vaidhyanathan
  • J. Binner
Article

Abstract

The paper reports the synthesis, structural and high frequency dielectric properties of Ba(Zr x Ti1−x )O3,BZT, nanopowders where x = 0, 0.1, 0.2, 0.3. These powders were synthesized using both microwave assisted and conventional heating, with the former requiring lower temperature and shorter times compared to the latter, viz., 700 °C for 30 min versus 900 °C for 5 h. The synthesized nanopowders were characterized using X-ray diffraction, micro-Raman spectroscopy, transmission electron microscopy, BET surface area analysis, differential scanning calorimetry and high frequency dielectric measurements. All the microwave synthesized BZT compositions were found to have well crystallized, finer nanoparticles with less agglomeration and higher dielectric permittivity compared to the conventionally prepared powders. The rapidity and less demanding processing conditions associated with the microwave assisted method augers well for the general applicability of the technique for the production of nanocrystalline powders.

Keywords

BaTiO3 Barium Titanate Conventional Heating Diffuse Phase Transition Barium Titanate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors thank the EPSRC/TSB of the United Kingdom for the research funding and one of the authors (VV) thank the Science Faculty Fellowship Fund of the Loughborough University for her PhD scholarship. Thanks are also due to Dr. George A Dimitrakis of the Nottingham University, UK for timely help with the high frequency dielectric measurements.

References

  1. 1.
    Jaffe B, Cook WR, Jaffe H (1981) Piezoelectric ceramics. Academic Press, New York, p 271Google Scholar
  2. 2.
    Bernadi MLB, Antoneli E, Lourenco AB, Feitosa CAC, Maia LJQ, Hernades AC (2007) J Therm Anal Calorim 87:725CrossRefGoogle Scholar
  3. 3.
    Landolt-Bornstein (1981) Landolt-Bornstein numerical data and functional relationship in science and technology. Springer-Verlag, Berlin, vol III/28a, p 268; vol III/16a, p 422Google Scholar
  4. 4.
    Hennings D, Schnell A (1982) J Am Ceram Soc 65:539CrossRefGoogle Scholar
  5. 5.
    Neirman SM (1988) J Mater Sci 23:3973. doi: 10.1007/BF01106823 CrossRefGoogle Scholar
  6. 6.
    McCauley D, Newnham RE, Randall CA (1998) J Am Ceram Soc 81:979CrossRefGoogle Scholar
  7. 7.
    Chen JF, Shen ZG, Liu FT, Liu XL, Yun J (2003) Scripta Mater 49:509CrossRefGoogle Scholar
  8. 8.
    Tang XG, Wang J, Wang XX, Chan HLW (2004) Solid State Commun 131:163CrossRefGoogle Scholar
  9. 9.
    Kumar M, Garg A, Kumar R, Bhatnagar MC (2008) Phys B 403:1819CrossRefGoogle Scholar
  10. 10.
    Reddy SB, Rao KP, Rao MSR (2007) Scripta Mater 57:591CrossRefGoogle Scholar
  11. 11.
    Outzourhit A, Idrissi Raghni MAE, Hafid ML, Bensamka F, Abdelkader O (2002) J Alloys Compd 340:214CrossRefGoogle Scholar
  12. 12.
    Gogotsi Y (2006) Nanomaterials handbook. Taylor & Francis, London, p 363Google Scholar
  13. 13.
    Binner J, Vaidhyanathan B (2008) J Eur Ceram Soc 28:1329CrossRefGoogle Scholar
  14. 14.
    Rao KJ, Vaidhyanathan B, Ganguli M, Ramakrishnan PA (1999) Chem Mater 11:882CrossRefGoogle Scholar
  15. 15.
    Janney MA, Kimrey HD (1991) Microwave processing of materials II. In: Snyder WB Jr, Sutton WH, Iskander MF, Johnson DL (eds) Materials Research Society Symposium Proceedings, vol 189, p 215Google Scholar
  16. 16.
    Sutton WH (1992) Microwave processing of materials III. In: Beatty RL, Sutton WH, Iskander MF (eds) Materials Research Society Symposium Proceedings, vol 269, p 3Google Scholar
  17. 17.
    Clark DE (1997) Microwaves: theory and application in materials processing IV. In: Clark D, Sutton WH, Lewis DA (eds) Ceramics Transactions, vol 80, p 61Google Scholar
  18. 18.
    Robb GR, Harrison A, Whittaker AG (2002) Phys Chem Commun 19:135Google Scholar
  19. 19.
    Vinothini V, Singh P, Balasubramanian M (2006) Ceram Int 32:99CrossRefGoogle Scholar
  20. 20.
    Vaidhyanathan B, Wang J, Binner JGP, Raghavendra R (2003) The effect of conventional, microwave and hybrid heating on the sintering of ceramics. In: 9th international conference on microwave and high frequency heating, Loughborough, p 31Google Scholar
  21. 21.
    Vaidhyanathan B, Annapoorani K, Binner JGP, Raghavendra R (2009) Ceram Eng Sci Proc 30:11Google Scholar
  22. 22.
    Wang J, Binner J, Vaidhyanathan B (2006) J Am Ceram Soc 89:1977CrossRefGoogle Scholar
  23. 23.
    Dimitrakis GA (2005) PhD Thesis, University of NottinghamGoogle Scholar
  24. 24.
    Plonskii YA, Pavlova GA, Savel’ev VN, Milovidova TV, Vinogradov VB (1971) Glass Ceram 28:182CrossRefGoogle Scholar
  25. 25.
    Dobal PS, Dixit A, Katiyar RS, Yu Z, Guo R, Bhalla AS (2001) J Raman Spectrosc 32:69CrossRefGoogle Scholar
  26. 26.
    Qi JQ, Wang Y, Chen WP, Li LT, Chan HTW (2006) J Nanoparticle Res 8:959CrossRefGoogle Scholar
  27. 27.
    Thakur OP, Prakash C, Agarwal DK (2002) Mater Sci Eng B96:221CrossRefGoogle Scholar
  28. 28.
    Sun W, Li J (2006) Mater Lett 60:1599CrossRefGoogle Scholar
  29. 29.
    Ho IC, Fu SL (1990) J Mater Sci 25:4699. doi: 10.1007/BF01129927 CrossRefGoogle Scholar
  30. 30.
    Asiaie R, Zhu W, Akbar SA, Dutta PK (1996) Chem Mater 8:226CrossRefGoogle Scholar
  31. 31.
    Fathi Z, Ahmed I, Simmons JH, Clark DE, Lodding AR (1991) Microwaves: theory and application in materials processing. In: Clark DE, Gac FD, Sutton WH (eds) Ceram Transactions, vol 21, p 623Google Scholar
  32. 32.
    Hassine JGP, Hassine NA, Cross TE (1995) J Mater Sci 30:5389. doi: 10.1007/BF00351548 CrossRefGoogle Scholar
  33. 33.
    Rybakov KI, Semenov VE (1994) Phys Rev B 49:64CrossRefGoogle Scholar
  34. 34.
    Rybakov KI, Semenov VE (1995) Phys Rev B 52:3032CrossRefGoogle Scholar
  35. 35.
    Hanxing L, Yongwei L, Hanlin Z, Shixi O (1997) Sci China Ser A 40:843CrossRefGoogle Scholar
  36. 36.
    Zhang H, Ouyang S, Liu H, Li Y (1996) Microwave processing of materials V. In: Iskander MK, Kiggans JO, Bolomey JC (eds) Materials Research Society Symposium Proceedings, vol 430, p 447Google Scholar
  37. 37.
    Vaidhyanathan B, Singh AP, Agrawal DK, Shrout TR, Roy R (2001) J Am Ceram Soc 84:1197CrossRefGoogle Scholar
  38. 38.
    Vaidhyanathan B, Binner JGP (2006) J Mater Sci 41:5954. doi: 10.1007/s10853-006-0260-z CrossRefGoogle Scholar
  39. 39.
    Vaidhyanathan B, Raizada P, Rao KJ (1997) J Mater Sci Lett 16:2022CrossRefGoogle Scholar
  40. 40.
    Willert-Porada M, Bartusch W, Dhupia G, Müller G, Nagel A, Wötting G (2000) In: Müller G (ed) Ceramics-processing, reliability, tribology and wear. Euromat 12:87. Wiley-VCH, BerlinGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MaterialsLoughborough UniversityLoughboroughUK

Personalised recommendations