Journal of Materials Science

, Volume 46, Issue 7, pp 2148–2154 | Cite as

Phase evolution in solution deposited Pb-deficient PLZT thin films

  • Krishna Nittala
  • Geoff L. Brennecka
  • Bruce A. Tuttle
  • Jacob L. Jones


Initial crystallization of Pb-deficient, lanthanum modified lead zirconate titanate (PLZT) layers followed by post-crystallization phase conversion can be used to obtain high quality PLZT thin films. However, phase evolution in Pb-deficient PLZT thin films is not well understood. To characterize phase evolution in these films, we developed a new in situ, high-temperature X-ray diffraction (XRD) measurement approach for slow heating rates. The well-characterized Pb-excess PLZT composition was used for comparison and to validate the new XRD setup described herein. During crystallization of Pb-deficient thin films, a Pb-rich/La-poor perovskite phase and Pb-poor/La-rich fluorite phase were observed to form simultaneously. The fluorite phase was observed to partially transform into a secondary perovskite phase at higher temperatures. The results obtained are discussed in view of the current understanding of phase evolution in these materials. The details of the new in situ XRD technique are also presented.


Perovskite Phase Evolution Perovskite Phase Lead Titanate Slow Heating Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the National Institute for NanoEngineering (NINE) and the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. JLJ acknowledges NSF for funding through award number DMR-0746902. The authors would also like to thank Dr. Valentin Craciun and MAIC at University of Florida for access to the Philips X’Pert XRD and Pat Mahoney at Sandia National Laboratories for help in preparation of samples.


  1. 1.
    Dimos D, Mueller CH (1998) Annu Rev Mater Sci 28:397CrossRefGoogle Scholar
  2. 2.
    Scott JF (2007) Science 315:954CrossRefGoogle Scholar
  3. 3.
    Muralt P (2000) J Micromech Mircoeng 10:136CrossRefGoogle Scholar
  4. 4.
    Auciello O, Scott JF, Ramesh R (1998) Phys Today 51:22CrossRefGoogle Scholar
  5. 5.
    Reaney IM, Brooks K, Klissurska R, Pawlaczyk C, Setter N (1994) J Am Ceram Soc 77:1209CrossRefGoogle Scholar
  6. 6.
    Brennecka GL, Tuttle BA (2007) J Mater Res 22:2868CrossRefGoogle Scholar
  7. 7.
    Brennecka GL, Parish CM, Tuttle BA, Brewer LN, Rodriguez MA (2008) Adv Mater 20:1407CrossRefGoogle Scholar
  8. 8.
    Polli AD, Lange FF, Levi CG (2000) J Am Ceram Soc 83:873CrossRefGoogle Scholar
  9. 9.
    Huang Z, Zhang Q, Whatmore RW (1998) J Mater Sci Lett 17:1157CrossRefGoogle Scholar
  10. 10.
    Chen SY, Chen IW (1998) J Am Ceram Soc 81:97CrossRefGoogle Scholar
  11. 11.
    Chen SY, Chen IW (1994) J Am Ceram Soc 77:2332CrossRefGoogle Scholar
  12. 12.
    Griswold EM, Weaver L, Sayer M, Calder ID (1995) J Mater Res 10:3149CrossRefGoogle Scholar
  13. 13.
    Huang Z, Zhang Q, Whatmore RW (1999) J Appl Phys 85:7355CrossRefGoogle Scholar
  14. 14.
    Wilkinson AP, Speck JS, Cheetham AK, Natarajan S, Thomas JM (1994) Chem Mater 6:750CrossRefGoogle Scholar
  15. 15.
    Chen J, Udayakumar KR, Brooks KG, Cross LE (1992) J Appl Phys 71:4465CrossRefGoogle Scholar
  16. 16.
    Assink RA, Schwartz RW (1993) Chem Mater 5:511CrossRefGoogle Scholar
  17. 17.
    Brennecka GL, Parish CM, Tuttle BA, Brewer LN (2008) J Mater Res 23:176CrossRefGoogle Scholar
  18. 18.
    Pramanick A, Omar S, Nino JC, Jones JL (2009) J Appl Cryst 42:490CrossRefGoogle Scholar
  19. 19.
    Kwok CK, Desu SB (1993) J Mater Res 8:339CrossRefGoogle Scholar
  20. 20.
    Chen SY, Chen IW (1994) J Am Ceram Soc 77:2337CrossRefGoogle Scholar
  21. 21.
    Lakeman CDE, Xu ZK, Payne DA (1995) J Mater Res 10:2042CrossRefGoogle Scholar
  22. 22.
    Norga GJ, Vasiliu F, Fe L, Wouters DJ, Van der Biest O (2003) J Mater Res 18:1232CrossRefGoogle Scholar
  23. 23.
    Kwok CK, Desu SB (1994) J Mater Res 9:1728CrossRefGoogle Scholar
  24. 24.
    Jacobs RN, Salamanca-Riba L (2003) J Mater Res 18:1405CrossRefGoogle Scholar
  25. 25.
    Sengupta SS, Ma L, Adler DL, Payne DA (1995) J Mater Res 10:1345CrossRefGoogle Scholar
  26. 26.
    Parish CM, Brennecka GL, Tuttle BA, Brewer LN (2008) J Mater Res 23:2944CrossRefGoogle Scholar
  27. 27.
    Breval E, Wang C, Dougherty JP, Gachigi KW (2005) J Am Ceram Soc 88:437CrossRefGoogle Scholar
  28. 28.
    Calame F, Muralt P (2007) Appl Phys Lett 90:162901CrossRefGoogle Scholar
  29. 29.
    Jaffe B, Cook WR, Jaffe H (1971) Piezoelectric ceramics. Academic Press, New YorkGoogle Scholar
  30. 30.
    Parish CM, Brennecka GL, Tuttle BA, Brewer LN (2008) J Am Ceram Soc 91:3690CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Krishna Nittala
    • 1
  • Geoff L. Brennecka
    • 2
  • Bruce A. Tuttle
    • 2
  • Jacob L. Jones
    • 1
  1. 1.Department of Materials Science and EngineeringUniversity of FloridaGainesvilleUSA
  2. 2.Materials Science and Engineering CenterSandia National LaboratoriesAlbuquerqueUSA

Personalised recommendations