Advertisement

Journal of Materials Science

, Volume 46, Issue 7, pp 2140–2147 | Cite as

Preparation, structure, and electrochemical performance of anodes from artificial graphite scrap for lithium ion batteries

  • Chang-ling FanEmail author
  • Han Chen
Article

Abstract

Artificial graphite scrap prepared from petroleum coke with low degree of graphitization was further graphitized under various conditions. Different categories of coke were also treated with the optimum technology. The prepared samples were characterized with X-ray diffraction, ash content determination, morphology observation, and galvanostatic charge and discharge. It was shown in the experiments that the heat treatment temperature should be increased to 2800 °C to remove impurities. Slow heating rate and evacuation technology were beneficial to the growth of graphite crystallite and the improvement of discharge capacity. And the latter condition possessed the larger influences, especially on the growth of crystallite dimension in the b axis direction, degree of graphitization, and discharge capacity. The sample D-3000 prepared from pure needle coke possessed the maximum discharge capacity of 342.1 mAhg−1 among all prepared samples. The linear regression equations between the volume of graphite crystallite and discharge capacity were established.

Keywords

Discharge Capacity LiFePO4 Graphite Electrode Heat Treatment Temperature Solid Electrolyte Interphase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

Authors would like to thank the Bureau of Science and Technology of Hunan Province (No. 00GK1006) and Chinese Ministry of Education (No. 20060532018) for their financial support.

References

  1. 1.
    Guo HJ, Li XH, Zhang XM, Wang HQ, Wang ZX, Peng WJ (2007) New Carbon Materials 22:7CrossRefGoogle Scholar
  2. 2.
    Kwak G, Park J, Lee J, Kim S, Jung I (2007) J Power Sources 174:484CrossRefGoogle Scholar
  3. 3.
    Zuo PJ, Yin GP, Ma YL (2007) Electrochim Acta 52:4878CrossRefGoogle Scholar
  4. 4.
    Zuo PJ, Wang ZB, Yin GP, Jia DC, Cheng XQ, Du CY, Shi PF (2008) J Mater Sci 43:3149. doi: 10.1007/s10853-008-2500-x CrossRefGoogle Scholar
  5. 5.
    Qiao H, Zheng Z, Zhang LZ, Xiao LF (2008) J Mater Sci 43:2778. doi: 10.1007/s10853-008-2510-8 CrossRefGoogle Scholar
  6. 6.
    Popova E, Dimitriev Y (2007) J Mater Sci 42:3358. doi: 10.1007/s10853-006-0787-z CrossRefGoogle Scholar
  7. 7.
    Wang D, Ding Η, Song XH, Chen CH (2009) J Mater Sci 44:198. doi: 10.1007/s10853-008-3104-1 CrossRefGoogle Scholar
  8. 8.
    Yoshio M, Wang H, Fukuda K, Hara Y, Adachi Y (2000) J Electrochem Soc 147:1245CrossRefGoogle Scholar
  9. 9.
    Zhou YF, Xie S, Chen CH (2005) Electrochim Acta 50:4728CrossRefGoogle Scholar
  10. 10.
    Zhang HL, Liu SH, Li F, Bai S, Liu C, Tan J, Cheng HM (2006) Carbon 44:2212CrossRefGoogle Scholar
  11. 11.
    Wang J, Chen MM, Wang CY, Hu BQ, Zheng JM (2010) Mater Lett 64:2281CrossRefGoogle Scholar
  12. 12.
    Imanishi N, Kashiwagi H, Ichikawa T, Takeda Y, Yamamoto O, Inagaki M (1993) J Electrochem Soc 140:315CrossRefGoogle Scholar
  13. 13.
    Tatsumi K, Zaghib K, Sawada Y (1997) J Electrochem Soc 144:2968CrossRefGoogle Scholar
  14. 14.
    Kimihito S, Takashi I, Masataka W (1999) Electrochim Acta 44:2185CrossRefGoogle Scholar
  15. 15.
    Gabrielle N, Xiang YS, Monique M, Abdelbast G, Gessie B, Kimio K, Karim Z (2002) J Power Sources 108:86CrossRefGoogle Scholar
  16. 16.
    Arrebola JC, Caballero A, Hernán L, Morales J (2008) J Power Sources 183:310CrossRefGoogle Scholar
  17. 17.
    Kobayashi H, Sakaebe H, Komoto K, Kaneko S, Kageyama H, Tabuchi M, Tatsumi K, Yonemura M, Kanno R, Kamiyama T (2004) Solid State Ion 175:229CrossRefGoogle Scholar
  18. 18.
    Yoon SH, Kim HJ, Oh SM (2001) J Power Sources 94:68CrossRefGoogle Scholar
  19. 19.
    Zhang YG, Wang CY, Yan P (2007) J Inorg Mater 22:622Google Scholar
  20. 20.
    Chou CS, Tsou CH, Wang CI (2008) Adv Powder Technol 19:383CrossRefGoogle Scholar
  21. 21.
    Ohta N, Nagaoka K, Hoshi K, Bitoh S, Inagaki M (2009) J Power Sources 194:985CrossRefGoogle Scholar
  22. 22.
    Ma SH, Li J, Jing XB, Wang FS (1996) Solid State Ion 86–88:911CrossRefGoogle Scholar
  23. 23.
    Tran TD, Spellman LM, Goldberger WM, Song X, Kinoshita K (1997) J Power Sources 68:106CrossRefGoogle Scholar
  24. 24.
    Lu W, Chung D (2003) Carbon 41:945CrossRefGoogle Scholar
  25. 25.
    Alcántara R, Lavel P, Ortiz GF, Tirado JL, Menéndez R, Santamaría R, Jiménez JM (2003) Carbon 41:3003CrossRefGoogle Scholar
  26. 26.
    Lia J, Naga K, Ohzawa Y, Nakajima T, Shames AI, Panich AM (2005) J Fluor Chem 126:265CrossRefGoogle Scholar
  27. 27.
    Kang HG, Park JK, Han BS, Lee H (2006) J Power Sources 153:170CrossRefGoogle Scholar
  28. 28.
    Ma J, Qin QZ (2005) J Power Sources 148:66CrossRefGoogle Scholar
  29. 29.
    Funimota K, Yasuda M, Yamashita R, Hisayuki N (1987) High Temp High Press 19:687Google Scholar
  30. 30.
    Letellier M, Chevallier F, Morcrette M (2007) Carbon 45:1025CrossRefGoogle Scholar
  31. 31.
    Iijima T, Suzuki K, Matsuda Y (1995) Synth Met 73:9CrossRefGoogle Scholar
  32. 32.
    Wissler M (2006) J Power Sources 156:142CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringHunan UniversityChangshaPeople’s Republic of China
  2. 2.School of Metallurgical EngineeringHunan University of TechnologyZhuzhouPeople’s Republic of China

Personalised recommendations