Journal of Materials Science

, Volume 46, Issue 7, pp 2123–2134 | Cite as

Bi-layered polymer–magnetite core/shell particles: synthesis and characterization

  • M. S. A. DarwishEmail author
  • U. Peuker
  • U. Kunz
  • T. Turek


Polymer magnetic core particles receive growing attention due to these materials owing magnetic properties which are widely used in different applications. The prepared composite particles are characterized with different properties namely: a magnetic core, a hydrophobic first shell, and finally an external second hydrophilic shell. The present study describes a method for the preparation of bi-layered polymer magnetic core particles (diameter range is 50–150 nm). This method comprises several steps including the precipitation of the magnetic iron oxide, coating the magnetite with oleic acid, attaching the first polymer shell by miniemulsion polymerization and finally introducing hydrophilic surface properties by condensation polymerization. The first step is the formation of magnetite nanoparticles within a co-precipitation process using oleic acid as the stabilizing agent for magnetite. The second step is the encapsulation of magnetite into polyvinylbenzyl chloride particles by miniemulsion polymerization to form a magnetic core with a hydrophobic polymer shell. The hydrophobic shell is desired to protect magnetite nanoparticles against chemical attack. The third step is the coating of magnetic core hydrophobic polymer shell composites with a hydrophilic layer of polyethylene glycol by condensation polymerization. Regarding the miniemulsion polymerization the influence of the amount of water, the mixing intensity and the surfactant concentration were studied with respect to the formation of particles which can be further used in chemical engineering applications. The resulting magnetic polymer nanoparticles were characterized by particle size measurement, chemical stability, iron content, TEM, SEM, and IR.


Magnetite Oleic Acid Sodium Dodecyl Sulfate Magnetite Nanoparticles Particle Size Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Yuan CL, Hong YS (2010) J Mater Sci 45:3470. doi: 10.1007/s10853-010-4375-x CrossRefGoogle Scholar
  2. 2.
    Elaissari A, Bosc E, Pichot C, Mandrand B, Bibette J, Mondain-Monval O (1999) French Patent 2800635Google Scholar
  3. 3.
    Murray MJ, Snowden MJ (1995) Adv Colloid Interface Sci 54:73CrossRefGoogle Scholar
  4. 4.
    Ugelstad J, Berge A, Ellingsen T (1992) Prog Polym Sci 17:87CrossRefGoogle Scholar
  5. 5.
    Kim DK, Zhang Y, Voit W, Rao KV, Kehr J, Bjelke B, Muhammed M (2001) Scripta Mater 44:1713CrossRefGoogle Scholar
  6. 6.
    Puntes VF, Krishanan KM, Alivisatos AP (2001) Science 291:2115CrossRefGoogle Scholar
  7. 7.
    Bizdoaca EL, Spasova M, Farle M, Hilgendorff M, Caruso F (2002) J Magn Magn Mater 240:44CrossRefGoogle Scholar
  8. 8.
    Veiga V, Ryan D, Sourty E, Llanes F, Marchessault R (2000) Carbohydr Polym 42:353CrossRefGoogle Scholar
  9. 9.
    Lovell PA, EL-Aasser MS (1997) Emulsion polymerization and emulsion polymers. Willy, New YorkGoogle Scholar
  10. 10.
    Rana S, White P, Bradley M (1999) Tetrahedron Lett 40:8137CrossRefGoogle Scholar
  11. 11.
    Sucholeiki I, Manuel Perez G (1999) Tetrahedron Lett 40:3531CrossRefGoogle Scholar
  12. 12.
    Sarobe J, Molina-Bolìvar JA, Forcada J, Galisteo F, Hidalgo-Álvarez R (1998) Macromolecules 31:4282CrossRefGoogle Scholar
  13. 13.
    Sheng Q, Stöver H (1997) Macromolecules 30:6712CrossRefGoogle Scholar
  14. 14.
    Darwish MSA, Machunsky S, Peuker U, Kunz U, Turek T (2010) J Polym Res. doi: 10.1007/s10965-010-9393-5
  15. 15.
    Machunsky S, Grimm P, Schmid H, Peuker U (2009) Colloids Surf A 348:186CrossRefGoogle Scholar
  16. 16.
    Xianqlao L, Kaminski D, Yueping G, Haitao C, Huizhou L, Rosengart A (2006) J Magn Magn Mater 306:248CrossRefGoogle Scholar
  17. 17.
    Ramírez P, Katharina L (2003) Macromol Chem Phys 204:22CrossRefGoogle Scholar
  18. 18.
    Banert T, Peuker U (2006) J Mater Sci 41:3051. doi: 10.1007/s10853-006-6976-y CrossRefGoogle Scholar
  19. 19.
    Varoujan A, May S, Jacqueline M, Jocelyn J (2002) Tetrahedron Lett 43:9023CrossRefGoogle Scholar
  20. 20.
    ASTM E394-00, Standard test method for iron in trace quantities using the 1,10-phenanthroline method, 2000Google Scholar
  21. 21.
    Elmes AR (1991) US Patent 4,985,468Google Scholar
  22. 22.
    Barby D (1985) US Patent 4,522,953Google Scholar
  23. 23.
    Zheng W, Gao F, Gu H (2005) J Magn Magn Mater 288:403CrossRefGoogle Scholar
  24. 24.
    Yamaura M, Camilo RL, Sampaio LC, Macedo MA, Nakamura M, Toma HE (2004) J Magn Magn Mater 279:210CrossRefGoogle Scholar
  25. 25.
    Korolev VV, Ramazanova AG, Blinov AV (2002) Russ Chem Bull 51:2044CrossRefGoogle Scholar
  26. 26.
    Yan F, Li J, Zhang J, Liu F, Yang W (2009) J Nanopart Res 11:289CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. S. A. Darwish
    • 1
    Email author
  • U. Peuker
    • 2
  • U. Kunz
    • 1
  • T. Turek
    • 1
  1. 1.Institute of Chemical Process EngineeringClausthal University of TechnologyClausthal-ZellerfeldGermany
  2. 2.Institute of Mechanical Process Engineering and Mineral ProcessingTechnical University Bergakademie FreibergFreibergGermany

Personalised recommendations