Journal of Materials Science

, Volume 46, Issue 19, pp 6323–6331 | Cite as

A study on the synthesis of nanostructured WC–10 wt% Co particles from WO3, Co3O4, and graphite

  • Y. Zhong
  • L. Shaw
Abbaschian Festschrift


The formation of the nanostructured WC–10 wt% Co powder from WO3, Co3O4, and graphite is studied. The effects of the processing parameters of high-energy ball milling, reduction in H2 atmosphere, and carburization in Ar/CO atmosphere are investigated. The crystallite size of the as-synthesized WC is 30–40 and 40–50 nm for 900 and 1000 °C carburized powders, respectively. The powder is agglomerated with the size of the primary particles ranging from 50 to 700 nm. High-energy ball milling of WO3–Co3O4–C powder mixtures leads to finer particle and crystallite sizes with larger surface area. Such milled powders can be reduced to nanostructured W at 570 °C and carburized to form WC at temperatures as low as 900 °C. Crystal growth has taken place during carburization, particularly at 1000 °C, which results in the formation of truncated triangular prisms and nanoplates of WC at 1000 °C.


Crystallite Size Carburization Co3O4 Ball Milling Milling Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was sponsored by the U.S. National Science Foundation (NSF) under the contract number CMMI-0856122. The support and vision of Dr. Mary Toney is greatly appreciated.


  1. 1.
    Gleiter H (1992) Nanostruct Mater 1:1CrossRefGoogle Scholar
  2. 2.
    Fang Z, Wang X, Ryu T, Hwang K, Sohn H (2009) Int J Refract Metals Hard Mater 27:288CrossRefGoogle Scholar
  3. 3.
    Porat R, Berger S, Rosen A (1996) Mater Sci Forum 629:225Google Scholar
  4. 4.
    Fecht HJ (1992) Nanostruct Mater 1:125CrossRefGoogle Scholar
  5. 5.
    Fecht HJ, Hellstern E, Fu Z, Johnson WL (1990) Metall Mater Trans A 21:2333CrossRefGoogle Scholar
  6. 6.
    Gao L, Kear BH, Seegopaul P (1999) US Patent 5,919,428Google Scholar
  7. 7.
    Seegopaul P, Gao L (2003) US Patent 6,524,366Google Scholar
  8. 8.
    Kim BK, Ha GG, Woo Y (2003) US Patent 6,511,551Google Scholar
  9. 9.
    Lee G, Ha GH, Kim BK (1999) J Korean Inst Metal Mater 37:1233Google Scholar
  10. 10.
    Zhang ZY, Wahlberg S, Wang MS, Muhammed M (1999) Nanostruct Mater 12:163CrossRefGoogle Scholar
  11. 11.
    Ryu T, Sohn HY, Han G, Kim Y, Hwang KS, Mena M, Fang ZZ (2008) Metall Mater Trans B 39:1CrossRefGoogle Scholar
  12. 12.
    Hojo J, Oku T, Kato A (1978) J Less-Common Metal 59:85CrossRefGoogle Scholar
  13. 13.
    Fitzsimmons M, Sarin VK (1995) Surf Coat Technol 76:250CrossRefGoogle Scholar
  14. 14.
    Kim JC, Kim BK (2004) Scripta Mater 50:969CrossRefGoogle Scholar
  15. 15.
    Ban ZG, Shaw L (2002) J Mater Sci 37:3397. doi: 10.1023/A:1016553426227 CrossRefGoogle Scholar
  16. 16.
    Ban ZG, Shaw L (2001) Acta Mater 49:2933CrossRefGoogle Scholar
  17. 17.
    Yang ZG, Shaw L (1996) Nanostruct Mater 7:873CrossRefGoogle Scholar
  18. 18.
    Zhong Y, Shaw L, Manjarres M, Zawrah MM (2010) J Am Ceram Soc 93:3159CrossRefGoogle Scholar
  19. 19.
    Klug HP, Aexander LE (1974) X-ray diffraction procedures for polycrystalline and amorphous materials. Wiley, New YorkGoogle Scholar
  20. 20.
    Snyder RL, Fiala J, Bunge HJ (1999) Defect and microstructure analysis by diffraction. Oxford University Press, OxfordGoogle Scholar
  21. 21.
    Mittermeijer EJ, Scardi P (2004) Diffraction analysis of the microstructure of materials. Springer-Verlag, BerlinGoogle Scholar
  22. 22.
    Ungar T (2004) Scripta Mater 51:777CrossRefGoogle Scholar
  23. 23.
    Liu W, Song X, Zhang J, Zhang G, Liu X (2008) Mater Chem Phys 109:235Google Scholar
  24. 24.
    Aronsson B, Pastor H (1991) Powder metallurgy: an overview. The Institute of Metals, LondonGoogle Scholar
  25. 25.
    Binnewies M, Milke E (2002) Thermochemical data of elements and compounds, 2nd edn. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  26. 26.
    Yih S, Wang C (1979) Tungsten: source metallurgy properties and applications. Plenum Press, New York, p 385Google Scholar
  27. 27.
    Gu D, Shen Y (2006) Mater Lett 60:3664CrossRefGoogle Scholar
  28. 28.
    de Villiers HL (1998) J Therm Spray Technol 7:357CrossRefGoogle Scholar
  29. 29.
    Sahraoui T, Guessasma S, Ali Jeridane M, Hadji M (2010) Mater Design 31:1431CrossRefGoogle Scholar
  30. 30.
    Exner HE (1979) Int Mater Rev 24:149Google Scholar
  31. 31.
    French DN, Thomas DA (1968) In: Vahldiek FV, Mersol J (eds) Anisotropy in single-crystal refractory compounds, vol 1. Plenum Press, New YorkGoogle Scholar
  32. 32.
    Takahashi T, Freise EJ (1965) Philos Mag 12:1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Chemical, Materials and Biomolecular EngineeringUniversity of ConnecticutStorrsUSA

Personalised recommendations