Advertisement

Journal of Materials Science

, Volume 46, Issue 4, pp 1027–1037 | Cite as

FP-LAPW calculations of structural, electronic, and optical properties of alkali metal tellurides: M2Te [M: Li, Na, K and Rb]

  • S. M. Alay-e-Abbas
  • A. Shaukat
Article

Abstract

Structural, electronic, and optical properties of alkali metal tellurides M2Te [M: Li, Na, K, and Rb] are investigated in the framework of density functional theory within generalized gradient approximation. The calculated structural parameters are in excellent agreement with the experimental data. The electronic band structure calculations show that tellurides of Li, K, and Rb have an indirect fundamental energy band gap, whereas Na2Te has a direct fundamental energy band gap. To explicate the contribution of anion and cation states to the electronic band structure, the electronic density of states for these compounds has been analyzed. Optical properties such as complex dielectric function, absorption coefficient, refractive index, extinction coefficient, and reflectivity are reported for a wide range of photon energy and are discussed on the basis of corresponding electronic band structure. Furthermore, the electron energy-loss functions for M2Te compounds are also predicted. In order to validate the performance of the ab initio calculation reported herein, we systematically study the electronic and optical properties of wide band gap M2Te compounds and compare them with available theoretical and experimental data of M2O, M2S, and M2Se compounds.

Keywords

Dielectric Function Generalize Gradient Approximation Electronic Band Structure Complex Dielectric Function Alkali Metal Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bisero D, di Bona A, Paradisi P, Valeri S (2000) J Appl Phys 87:543CrossRefGoogle Scholar
  2. 2.
    Piccioli A, Pegna R, Fedorko I, Giunta M, Malakhov N, Menzione A, Raffaelli F, Braem A, Chesi E, Joram C, Séguinol J, Sartorl G, Weilhammer P (2004) Nucl Instr Meth Phys Res Sect A 518:602CrossRefGoogle Scholar
  3. 3.
    Joram C (1999) Nucl Phys B (Proc. Suppl.) 78:407CrossRefGoogle Scholar
  4. 4.
    Geller S (1997) Solid Electrolytes. Springer, BerlinGoogle Scholar
  5. 5.
    Vashishta P, Mundy JN, Shenoy GK (1979) Fast ion transport in solids. North-Holland, AmsterdamGoogle Scholar
  6. 6.
    Tuller HL, Balkanski M (1989) Science and technology of fast ion conductors. Plenum, New YorkGoogle Scholar
  7. 7.
    Kikuchi H, Iyetomi H, Hasegawa A (1989) J Phys Condens Matter 10:11439CrossRefGoogle Scholar
  8. 8.
    Koh AK (1999) Phys Status Solidi (b) 210:31CrossRefGoogle Scholar
  9. 9.
    Jain VK, Shanker J (1982) Phys Status Solidi (b) 114:287CrossRefGoogle Scholar
  10. 10.
    Chaturvedi SD, Sharma SB, Paliwal P, Kumar M (1989) Phys Status Solidi (b) 156:171CrossRefGoogle Scholar
  11. 11.
    Melillou A, Gupta BRK (1991) Czechoslov J Phys 41:813CrossRefGoogle Scholar
  12. 12.
    Stöwe K (2004) Z Kristallogr 219:359CrossRefGoogle Scholar
  13. 13.
    Sangster J, Pelton AD (1992) J Phase Equilib 3:303Google Scholar
  14. 14.
    Pelton AD, Petric A (1990) J Phase Equilib 11:447Google Scholar
  15. 15.
    Petric A, Pelton AD (1990) J Phase Equilib 11:443Google Scholar
  16. 16.
    Sangster J, Pelton AD (1997) J Phase Equilib 18:394CrossRefGoogle Scholar
  17. 17.
    Eithiraj RD, Jaiganesh G, Kalpana G (2009) Int J Mod Phys B 23:5027CrossRefGoogle Scholar
  18. 18.
    Seifert-Lorenz K, Hafner J (2002) Phys Rev B 66:094105CrossRefGoogle Scholar
  19. 19.
    Gruen DM, McBeth RL, Foster MS, Crouthamel CE (1962) J Phys Chem 70:472CrossRefGoogle Scholar
  20. 20.
    Foster MS, Liu CC (1966) J Phys Chem 7:950CrossRefGoogle Scholar
  21. 21.
    Zintl E, Harder A, Dauth B (1934) Z Elektrochem 40:588Google Scholar
  22. 22.
    Moakafi M, Khenata R, Bouhemadou A, Khachai H, Amrani B, Rached D, Rėrat M (2008) Eur Phys J B 64:35CrossRefGoogle Scholar
  23. 23.
    Khachai H, Khenata R, Bouhemadou A, Haddou A, Reshak AH, Amrani B, Rached D, Soudini B (2009) J Phys Condens Matter 21:095404CrossRefGoogle Scholar
  24. 24.
    Alay-e-Abbas SM, Sabir N, Saeed Y, Shaukat A (2010) J Alloys Compd 503:10CrossRefGoogle Scholar
  25. 25.
    Blaha P, Schwarz K, Madsen GH, Kvasnicka D, Luitz J (2001) In: Schwarz K (ed) FP-L/APW + lo programe for calculating crystal properties, Technische Universität Wien, ViennaGoogle Scholar
  26. 26.
    Wu Z, Cohen RE (2006) Phys Rev B 73:235116CrossRefGoogle Scholar
  27. 27.
    Engel E, Vosko SH (1993) Phys Rev B 47:13164CrossRefGoogle Scholar
  28. 28.
    Ambrosch-Draxl C, Sofo JO (2006) Comput Phys Commun 175:1CrossRefGoogle Scholar
  29. 29.
    Wooten F (1972) Optical properties of solids. Academic Press, New YorkGoogle Scholar
  30. 30.
    Sommer H, Hoppe R (1997) Z Anorg Allg Chem 429:118CrossRefGoogle Scholar
  31. 31.
    Stöwe K, Appel S (2002) Angew Chem Int Ed Engl 41:2725CrossRefGoogle Scholar
  32. 32.
    Murnaghan FD (1944) Prot Natl Acad Sci USA 30:244CrossRefGoogle Scholar
  33. 33.
    Bachelet GB, Chrstensen NE (1985) Phys Rev B 31:879CrossRefGoogle Scholar
  34. 34.
    Onida G, Reining L, Rubio A (2002) Rev Mod Phys 74:601CrossRefGoogle Scholar
  35. 35.
    Fahy S, Chang KJ, Louis SG, Cohen ML (1989) Phys Rev B 35:7840Google Scholar
  36. 36.
    Terakura K, Oguchi T, Williams AR, Kübler J (1984) Phys Rev B 30:4734CrossRefGoogle Scholar
  37. 37.
    Singh DJ, Askhenazi J (1992) Phys Rev B 46:11570CrossRefGoogle Scholar
  38. 38.
    Dufek P, Blaha P, Schwarz K (1994) Phys Rev B 50:7279CrossRefGoogle Scholar
  39. 39.
    Bouhemadou A, Khenata R, Zegrar F, Sahnoun M, Baltache H, Reshak AH (2006) Comput Mater Sci 38:263CrossRefGoogle Scholar
  40. 40.
    Cohen AJ, Mori-Sanchez P, Yang W (2008) Phys Rev B 77:115123CrossRefGoogle Scholar
  41. 41.
    Perdew JP, Schmidt K (2001) In: Van Doren VE, Van Alsenoy K, Greelings P (eds) Density functional theory and its applications to materials. American Institute of Physics. MelvilleGoogle Scholar
  42. 42.
    Mikajlo EA, Dorsett HE, Ford MJ (2004) J Chem Phys 120:10799CrossRefGoogle Scholar
  43. 43.
    Harrison WA (1989) Electronic structure and the properties of solids. Dover, New YorkGoogle Scholar
  44. 44.
    Persson C, Ahuja R, Ferreira da Silva A, Johansson B (2001) J Cryst Growth 231:407CrossRefGoogle Scholar
  45. 45.
    Xu M, Wang SY, Yin G, Li J, Zheng YX, Chen LY (2006) Appl Phys Lett 89:151908CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of PhysicsGC UniversityFaisalabadPakistan
  2. 2.Department of PhysicsUniversity of SargodhaSargodhaPakistan

Personalised recommendations