Journal of Materials Science

, Volume 46, Issue 2, pp 416–421 | Cite as

Preparation and photoelectrochemical characterization of WO3/TiO2 nanotube array electrode

  • Jing Wang
  • Yanhe Han
  • Manzhi Feng
  • Jinzhu Chen
  • Xinjun Li
  • Shanqing Zhang
Article

Abstract

WO3/TiO2 nanotube array electrode was fabricated by incorporating WO3 with TiO2 nanotube array via a wet impregnation method using ammonium tungstate as the precursor. TiO2 and WO3/TiO2 nanotube arrays were characterized by field emission scanning electron microscopy, X-ray diffraction, and energy dispersive X-ray analysis. In order to characterize the photoelectrochemical properties of WO3/TiO2 electrode, electrochemical impedance spectroscopy, and steady-state photocurrent (i ss) measurement at a controlled potential were performed in the supporting electrolyte containing different concentrations of glucose. The photoelectrochemical characterization results reveal that WO3/TiO2 nanotube array electrode possesses a much higher separation efficiency of the photogenerated electron–hole pairs and could generate more photoholes on the electrode surface compared with the pure TiO2 nanotube array electrode. The i ss for glucose oxidation at WO3/TiO2 nanotube array electrode is much higher than that at the pure TiO2 nanotube array electrode.

Notes

Acknowledgements

The study was supported by Knowledge Innovation Program of the Chinese Academy of Sciences (No. KGCX2-YW-343), Natural Science Foundation of Guangdong Province (No. 07000743), and National 973 Project of China (No. 2009CB220002).

References

  1. 1.
    Shankar K, Basham JI, Allam NK, Varghese OK, Mor GK, Feng XJ, Paulose M, Seabold JA, Choi KS, Grimes CA (2009) J Phys Chem C 113(16):6327CrossRefGoogle Scholar
  2. 2.
    Rani S, Roy SC, Paulose M, Varghese OK, Mor GK, Kim S, Yoriya S, LaTempa TJ, Grimes CA (2010) Phys Chem Chem Phys 12(12):2780CrossRefGoogle Scholar
  3. 3.
    Grimes CA, Mor GK (2009) TiO2 nanotube array: synthesis properties, and applications. Springer, DordrechtGoogle Scholar
  4. 4.
    Paulose M, Varghese OK, Mor GK, Grimes CA, Ong KG (2006) Nanotechnology 17:398CrossRefGoogle Scholar
  5. 5.
    Varghese OK, Yang X, Kendig J, Paulose M, Zeng K, Palmer C, Ong KG, Grimes CA (2006) Sens Lett 4:120CrossRefGoogle Scholar
  6. 6.
    Mor GK, Varghese OK, Paulose M, Grimes CA (2003) Sens Lett 1:42CrossRefGoogle Scholar
  7. 7.
    Alivov Y, Fan ZY (2010) J Mater Sci 45:2902. doi: 10.1007/s10853-010-4281-2 CrossRefGoogle Scholar
  8. 8.
    Shankar K, Mor GK, Prakasam HE, Yoriya S, Paulose M, Varghese OK, Grimes CA (2007) Nanotechnology 18:065707CrossRefGoogle Scholar
  9. 9.
    Chen SG, Paulose M, Ruan C, Mor GK, Varghese OK, Grimes CA (2006) J Photochem Photobiol A 177:177CrossRefGoogle Scholar
  10. 10.
    Costa LL, Prado AGS (2009) J Photochem Photobiol A Chem 201:45CrossRefGoogle Scholar
  11. 11.
    Kang XW, Chen SW (2010) J Mater Sci 45:2696. doi: 10.1007/s10853-010-4254-5 CrossRefGoogle Scholar
  12. 12.
    Zhang ZH, Yuan Y, Liang LH, Cheng YX, Shi GY, Jin LT (2008) J Hazard Mater 158:517CrossRefGoogle Scholar
  13. 13.
    Schmidt-Stein F, Hahn R, Gnichwitz JF, Song YY, Shrestha NK, Hirsch A, Schmuki P (2009) Electrochem Commun 11:2077CrossRefGoogle Scholar
  14. 14.
    Sun L, Li J, Wang CL, Li SF, Chen HB, Lin CJ (2009) Sol Energy Mater Sol Cells 93:1875CrossRefGoogle Scholar
  15. 15.
    Tu YF, Huang SY, Sang JP, Zou XW (2009) J Alloys Compd 482:382CrossRefGoogle Scholar
  16. 16.
    Liu HJ, Liu GG, Zhou QX (2009) J Solid State Chem 182:3238CrossRefGoogle Scholar
  17. 17.
    Xu JJ, Ao YH, Chen MD, Fu DG (2010) Appl Surf Sci 256:4397CrossRefGoogle Scholar
  18. 18.
    Kuang SY, Yang LX, Luo SL, Cai QY (2009) Appl Surf Sci 255:7385CrossRefGoogle Scholar
  19. 19.
    Chen SG, Paulose M, Ruan CM, Mor GK, Varghese OK, Kouzoudis D, Grimes CA (2006) J Photochem Photobiol A Chem 177:177CrossRefGoogle Scholar
  20. 20.
    Lin CJ, Yu YH, Liou YH (2009) Appl Catal B Environ 93:119CrossRefGoogle Scholar
  21. 21.
    Hou LR, Yuan CZ, Peng Y (2007) J Hazard Mater B139:310CrossRefGoogle Scholar
  22. 22.
    Wang N, Li XY, Wang YX, Hou Y, Zou XJ, Chen GH (2008) Mater Lett 62:3691CrossRefGoogle Scholar
  23. 23.
    Tsuchiya H, Macak JM, Ghicov A, Taveira L, Schmuki P (2005) Corros Sci 47:3324CrossRefGoogle Scholar
  24. 24.
    Li XZ, Li FB, Yang CL, Ge WK (2001) J Photochem Photobiol A Chem 141:209CrossRefGoogle Scholar
  25. 25.
    Yang HM, Shi RR, Zhang K, Hu YH, Tang AD, Li XW (2005) J Alloys Compd 398:200CrossRefGoogle Scholar
  26. 26.
    Ke DN, Liu HJ, Peng TY, Liu X, Dai K (2008) Mater Lett 62:447CrossRefGoogle Scholar
  27. 27.
    Benoit A, Paramasivam I, Nah YC, Roy P, Schmuki P (2009) Electrochem Commun 11:728CrossRefGoogle Scholar
  28. 28.
    Spagnol V, Sutter E, Debiemme-Chouvy C, Cachet H, Baroux B (2009) Electrochim Acta 54:1228CrossRefGoogle Scholar
  29. 29.
    Leng WH, Zhang Z, Zhang JQ, Cao CN (2005) J Phys Chem B 109:15008CrossRefGoogle Scholar
  30. 30.
    Zheng JY, Yu H, Li XJ, Zhang SQ (2008) Appl Surf Sci 254:1630CrossRefGoogle Scholar
  31. 31.
    Jiang DL, Zhao HJ, Zhang SQ, John R (2003) J Phys Chem B 107:12774CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jing Wang
    • 1
    • 3
  • Yanhe Han
    • 2
  • Manzhi Feng
    • 1
  • Jinzhu Chen
    • 1
  • Xinjun Li
    • 1
  • Shanqing Zhang
    • 2
  1. 1.Guangzhou Institute of Energy Conversion, Chinese Academy of SciencesGuangzhouPeople’s Republic of China
  2. 2.Environmental Futures Centre and Griffith School of EnvironmentGold Coast Campus, Griffith UniversityGold CoastAustralia
  3. 3.Graduate University of the Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations