Journal of Materials Science

, Volume 46, Issue 1, pp 117–122

Effect of ion exchange on R-curve behavior of a dental porcelain

  • Paulo Francisco Cesar
  • Vinicius Rosa
  • Marcelo Mendes Pinto
  • Humberto Naoyuki Yoshimura
  • Luoyu Roy Xu


The objective of this study was to evaluate the effect of the ion exchange treatment on the R-curve behavior of a leucite-reinforced dental porcelain, testing the hypothesis that the ion exchange is able to improve the R-curve behavior of the porcelain studied. Porcelain disks were sintered, finely polished, and submitted to an ion exchange treatment with a KNO3 paste. The R-curve behavior was assessed by fracturing the specimens in a biaxial flexure design after making Vickers indentations in the center of the polished surface with loads of 1.8, 3.1, 4.9, 9.8, 31.4, and 49.0 N. The results showed that the ion exchange process resulted in significant improvements in terms of fracture toughness and flexural strength as compared to the untreated material. Nevertheless, the rising R-curve behavior previously observed in the control group disappeared after the ion exchange treatment, i.e., fracture toughness did not increase with the increase in crack size for the treated group.


  1. 1.
    Nalla RK, Kruzic JJ, Ritchie RO (2004) Bone 34:790CrossRefGoogle Scholar
  2. 2.
    Nazari A, Bajaj D, Zhang D, Romberg E, Arola D (2009) J Mech Behav Biomed Mater 2:550CrossRefGoogle Scholar
  3. 3.
    Bajaj D, Arola DD (2009) Biomaterials 30:4037CrossRefGoogle Scholar
  4. 4.
    Fischer H, Rentzsch W, Marx R (2002) J Dent Res 81:547CrossRefGoogle Scholar
  5. 5.
    Shah MB, Ferracane JL, Kruzic JJ (2009) Dent Mater 25:760CrossRefGoogle Scholar
  6. 6.
    Shah MB, Ferracane JL, Kruzic JJ (2009) J Mech Behav Biomed Mater 2:502CrossRefGoogle Scholar
  7. 7.
    Launey ME, Ritchie RO (2009) Adv Mater 21:2103CrossRefGoogle Scholar
  8. 8.
    Nairn JA (2009) Int J Fract 155:167CrossRefGoogle Scholar
  9. 9.
    Munz D (2007) J Am Ceram Soc 90:1CrossRefGoogle Scholar
  10. 10.
    Swain MV (1985) Acta Metall 33:2083CrossRefGoogle Scholar
  11. 11.
    Swanson PL, Fairbanks CJ, Lawn BR, Mai YW, Hockey BJ (1987) J Am Ceram Soc 70:279CrossRefGoogle Scholar
  12. 12.
    Fett T, Munz D (1993) J Mater Sci 28:742. doi:10.1007/BF01151251 CrossRefGoogle Scholar
  13. 13.
    Steinbrech RW, Reichl A, Schaarwachter W (1990) J Am Ceram Soc 73:2009CrossRefGoogle Scholar
  14. 14.
    Rodel J (1992) J Eur Ceram Soc 10:143CrossRefGoogle Scholar
  15. 15.
    Medeiros IS, Luz LA, Yoshimura HN, Cesar PF, Hernandes AC (2009) J Mech Behav Biomed Mater 2:471CrossRefGoogle Scholar
  16. 16.
    Kruzic JJ, Satet RL, Hoffmann MJ, Cannon RM, Ritchie RO (2008) J Am Ceram Soc 91:1986CrossRefGoogle Scholar
  17. 17.
    Chantikul P, Bennison SJ, Lawn BR (1990) J Am Ceram Soc 73:2419CrossRefGoogle Scholar
  18. 18.
    Yoshimura HN, Cesar PF, Miranda WG, Okada CY, Goldenstein H, Gonzaga CC (2005) J Am Ceram Soc 88:1680CrossRefGoogle Scholar
  19. 19.
    Rodriguez-Suarez T, Lopez-Esteban S, Pecharroman C et al (2009) Acta Mater 57:2121CrossRefGoogle Scholar
  20. 20.
    Krause RF (1988) J Am Ceram Soc 71:338CrossRefGoogle Scholar
  21. 21.
    Cesar PF, Gonzaga CC, Miranda WG Jr, Yoshimura HN (2007) J Biomed Mater Res B 83:538Google Scholar
  22. 22.
    Sinton CW, Lacourse WC, O’Connell MJ (1999) Mater Res Bull 34:2351CrossRefGoogle Scholar
  23. 23.
    Rosa V, Yoshimura HN, Pinto MM, Fredericci C, Cesar PF (2009) Dent Mater 25:736CrossRefGoogle Scholar
  24. 24.
    ASTM (2002) C 1161 Flexural strength of advanced ceramics at ambient temperature. American Society for Testing MaterialsGoogle Scholar
  25. 25.
    Lange FF, Hirlinger MM (1985) J Mater Sci Lett 4:1437CrossRefGoogle Scholar
  26. 26.
    Cesar PF, Soki FN, Yoshimura HN, Gonzaga CC, Styopkin V (2008) Dent Mater 24:1114CrossRefGoogle Scholar
  27. 27.
    ASTM Designation (Reapproved 1991) American Society for Testing Materials; F394-78, Philadelphia, PAGoogle Scholar
  28. 28.
    Cate JMT, Duijisters PPE (1982) Caries Res 16:201CrossRefGoogle Scholar
  29. 29.
    JIS (1986) Testing methods for elastic modulus of high performance ceramics. JIS R 1602: 216Google Scholar
  30. 30.
    Yoshimura HN, Molisani AL, Narita NE, Cesar PF, Goldenstein H (2007) Mater Res 10:127Google Scholar
  31. 31.
    Fischer H, Rentzsch W, Marx R (2002) J Dent Res 8:547Google Scholar
  32. 32.
    Quinn GD (2007) Fractography of ceramics and glasses. U.S. Government Printing Office, WashingtonGoogle Scholar
  33. 33.
    Pinto MM, Cesar PF, Rosa V, Yoshimura HN (2008) Dent Mater 24:814CrossRefGoogle Scholar
  34. 34.
    Fischer H, Marx R (2003) J Biomed Mater Res A 66:885CrossRefGoogle Scholar
  35. 35.
    Seghi RR, Crispin BC, Mito W (1990) Int J Prosthodont 3:130Google Scholar
  36. 36.
    Green DJ, Tandon R, Sglavo VM (1999) Science 283:1295CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Paulo Francisco Cesar
    • 1
    • 5
  • Vinicius Rosa
    • 1
  • Marcelo Mendes Pinto
    • 2
  • Humberto Naoyuki Yoshimura
    • 3
  • Luoyu Roy Xu
    • 4
  1. 1.Department of Dental Materials, School of DentistryUniversity of São PauloSão PauloBrazil
  2. 2.Universidade Nove de Julho (UNINOVE)São PauloBrazil
  3. 3.Center for Engineering, Modeling and Applied Social ScienceFederal University of ABCSanto AndréBrazil
  4. 4.Department of Civil and Environmental EngineeringVanderbilt UniversityNashvilleUSA
  5. 5.Departamento de Materiais Dentários, Faculdade de OdontologiaUniversidade de São PauloSão PauloBrazil

Personalised recommendations