Journal of Materials Science

, Volume 46, Issue 4, pp 975–982 | Cite as

Pyrolytic formation of a carbonaceous solid for heavy metal adsorption

  • A. B. Bourlinos
  • M. A. Karakassides
  • P. Stathi
  • Y. Deligiannakis
  • R. Zboril
  • P. Dallas
  • T. A. Steriotis
  • A. K. Stubos
  • C. Trapalis


The solid-state pyrolysis of acetylenedicarboxylic acid, monopotassium salt at 300 °C in air results in bulk quantities of a micron-sized yet macroporous oxidized carbon, which inherently possesses high content of metal-binding sites, such as carboxylate groups, free radicals, and ether/hydroxyl units. Besides its high oxygen content, the solid is stable in water and does not leach or disorient, while it also exhibits an appreciable thermal stability, at temperature exceeding 200 °C in air. Several techniques including TEM/SEM, TGA, Raman/FT-IR, XPS, EPR, and potentiometric titrations were employed for the characterization of the solid. Furthermore, liquid phase adsorption experiments revealed that the material is an efficient heavy metal adsorbent due to the presence of diverse surface-accessible binding sites, showing unusually high metal uptake capacities for Pb2+ and Cu2+ ions (ca. 4.5 mmol g−1).


Electron Paramagnetic Resonance Electron Paramagnetic Resonance Spectrum Electron Paramagnetic Resonance Data Heavy Metal Adsorbent Anodic Stripping Voltammetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was co-funded by the European Union within the framework of the program “Pythagoras I” of the “Operational Program for Education and Initial Vocational Training” of the 3rd Community Support Framework of the Hellenic Ministry of Education, funded by 25% from the national sources and by 75% from the European Social Fund (ESF), as well as, by the projects of the ministry of education of the Czech Republic (1M6198959201 and MSM6198959218). A. B. Bourlinos and A. K. Stubos acknowledge the funding support provided by the EC FP7 under Grant Agreement No. 229773 (PERL).


  1. 1.
    Lafferty C, Hobday M (1990) Fuel 69:78CrossRefGoogle Scholar
  2. 2.
    Sugano M, Mashimo K, Wainai T (1999) Fuel 78:945CrossRefGoogle Scholar
  3. 3.
    Wu J, Xu Q, Bai T (2007) Appl Radiat Isot 65:901CrossRefGoogle Scholar
  4. 4.
    Pehlivan E, Arslan G (2007) Fuel Process Technol 88:99CrossRefGoogle Scholar
  5. 5.
    Sevilla M, Fuertes AB (2009) Carbon 47:2281CrossRefGoogle Scholar
  6. 6.
    Demir-Cakan R, Baccile N, Antonietti M, Titirici M-M (2009) Chem Mater 21:484CrossRefGoogle Scholar
  7. 7.
    Hu B, Wang K, Wu L, Yu S-H, Antonietti M, Titirici M-M (2010) Adv Mater 22:813CrossRefGoogle Scholar
  8. 8.
    Bourlinos AB, Georgakilas V, Zboril R (2008) Carbon 46:1801CrossRefGoogle Scholar
  9. 9.
    Bourlinos AB, Steriotis TA, Karakassides M, Sanakis Y, Tzitzios V, Trapalis C, Kouvelos E, Stubos A (2007) Carbon 45:852CrossRefGoogle Scholar
  10. 10.
    Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Karakassides M, Giannelis EP (2008) Small 4:455CrossRefGoogle Scholar
  11. 11.
    Bourlinos AB, Stassinopoulos A, Anglos D, Zboril R, Georgakilas V, Giannelis EP (2008) Chem Mater 20:4539CrossRefGoogle Scholar
  12. 12.
    Bourlinos AB, Giannelis EP, Sanakis Y, Bakandritsos A, Karakassides M, Gjoka M, Petridis D (2006) Carbon 44:1906CrossRefGoogle Scholar
  13. 13.
    Bourlinos AB, Georgakilas V, Zboril R, Bakandritsos A, Stassinopoulos A, Anglos D, Giannelis EP (2009) Carbon 47:519CrossRefGoogle Scholar
  14. 14.
    Bourlinos AB, Steriotis TA, Zboril R, Georgakilas V, Stubos A (2009) J Mater Sci 44:1407. doi: 10.1007/s10853-009-3263-8 CrossRefGoogle Scholar
  15. 15.
    Bakandritsos A, Bourlinos AB, Tzitzios V, Boukos N, Devlin E, Steriotis T, Kouvelos V, Petridis D (2007) Adv Funct Mater 17:1409CrossRefGoogle Scholar
  16. 16.
    Skoulika S, Dallas P, Siskos MG, Deligiannakis Y, Michaelides A (2003) Chem Mater 15:4576CrossRefGoogle Scholar
  17. 17.
    Dallas P, Bourlinos AB, Komninou P, Karakassides M, Niarchos D (2009) Nanoscale Res Lett 4:1358CrossRefGoogle Scholar
  18. 18.
    Stathi P, Louloudi M, Deligiannakis Y (2009) Chem Phys Lett 472:85CrossRefGoogle Scholar
  19. 19.
    Chang T (1984) Magn Reson Rev 9:65Google Scholar
  20. 20.
    Stathi P, Litina K, Gournis D, Giannopoulos TS, Deligiannakis Y (2007) J Colloid Interface Sci 316:298CrossRefGoogle Scholar
  21. 21.
    Levine DG, Schlosberg RH, Silbernagel BG (1982) Proc Natl Acad Sci USA 79:3365CrossRefGoogle Scholar
  22. 22.
    Linge HG (1989) Fuel 68:111CrossRefGoogle Scholar
  23. 23.
    Skrabalak SE, Suslick KS (2006) J Am Chem Soc 128:12642CrossRefGoogle Scholar
  24. 24.
    Bang JH, Han K, Skrabalak SE, Kim H, Suslick KS (2007) J Phys Chem C 111:10959CrossRefGoogle Scholar
  25. 25.
    Petrus L, Stamhuis EJ, Joosten GEH (1981) Ind Eng Chem Prod Res Dev 20:366CrossRefGoogle Scholar
  26. 26.
    Raje AP, Datta R (1992) J Mol Catal 72:97CrossRefGoogle Scholar
  27. 27.
    Cuesta A, Dhamelincourt P, Laureyns J, Martinez-Alonso A, Tascón JMD (1994) Carbon 32:1523CrossRefGoogle Scholar
  28. 28.
    Gasgnier M (2001) J Mater Sci Lett 20:1259CrossRefGoogle Scholar
  29. 29.
    Fanning PE, Vannice MA (1993) Carbon 31:721CrossRefGoogle Scholar
  30. 30.
    Kaufman JH, Metin S, Saperstein DD (1989) Phys Rev B 39:13053CrossRefGoogle Scholar
  31. 31.
    Zhou Z, Xia L (2002) J Phys D Appl Phys 35:1991CrossRefGoogle Scholar
  32. 32.
    Ferrari AC, Rodil SE, Robertson J (2003) Phys Rev B 67:155306CrossRefGoogle Scholar
  33. 33.
    Zhou J-H, Sui Z-J, Zhu J, Li P, Chen D, Dai Y-C, Yuan W-K (2007) Carbon 45:785CrossRefGoogle Scholar
  34. 34.
    Zhang D, Luo H, Wang Y, Feng H (2010) Chem Lett 39:424CrossRefGoogle Scholar
  35. 35.
    Lijewski S, Wencka M, Hoffmann SK, Kempinski M (2008) Phys Rev B 77:014304CrossRefGoogle Scholar
  36. 36.
    Arcon D, Jaglicic Z, Zorko A, Rode AV, Christy AG, Madsen NR, Gamaly EG, Luther-Davies B (2006) Phys Rev B 74:014438CrossRefGoogle Scholar
  37. 37.
    Garaj S, Thien-Nga L, Gaal R, Forro L, Takahashi K, Kokai F, Yudasaka M, Iijima S (2000) Phys Rev B 62:17115CrossRefGoogle Scholar
  38. 38.
    Schwartz LM, Gelb RI, Laufer DA (1980) J Chem Eng Data 25:95CrossRefGoogle Scholar
  39. 39.
    Ma T-Y, Zhang X-J, Yuan Z-Y (2009) J Mater Sci 44:6775. doi: 10.1007/s10853-009-3576-7 CrossRefGoogle Scholar
  40. 40.
    Ma T-Y, Lin X-Z, Zhang X-J, Yuan Z-Y (2010) New J Chem 34:1209CrossRefGoogle Scholar
  41. 41.
    Ma T-Y, Lin X-Z, Yuan Z-Y (2010) Chem Eur J 16:8487CrossRefGoogle Scholar
  42. 42.
    Alfarra A, Frackowiak E, Béguin F (2004) Appl Surf Sci 228:84CrossRefGoogle Scholar
  43. 43.
    Montes-Morán MA, Suarez D, Menéndez JA, Fuente E (2004) Carbon 42:1219CrossRefGoogle Scholar
  44. 44.
    Radovic LR, Bockrath B (2005) J Am Chem Soc 127:5917CrossRefGoogle Scholar
  45. 45.
    Peisach J, Blumberg WE (1974) Arch Biochem Biophys 165:691CrossRefGoogle Scholar
  46. 46.
    Grigoropoulou G, Christoforidis KC, Louloudi M, Deligiannakis Y (2007) Langmuir 23:10407CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • A. B. Bourlinos
    • 1
  • M. A. Karakassides
    • 2
  • P. Stathi
    • 3
  • Y. Deligiannakis
    • 3
  • R. Zboril
    • 4
  • P. Dallas
    • 1
  • T. A. Steriotis
    • 5
  • A. K. Stubos
    • 6
  • C. Trapalis
    • 1
  1. 1.Institute of Materials Science, NCSR “Demokritos”AthensGreece
  2. 2.Department of Materials Science and EngineeringUniversity of IoanninaIoanninaGreece
  3. 3.Laboratory of Physical Chemistry, Department of Environmental and Natural Resources ManagementUniversity of IoanninaAgrinioGreece
  4. 4.Department of Physical ChemistryPalacky UniversityOlomoucCzech Republic
  5. 5.Institute of Physical Chemistry, NCSR “Demokritos”AthensGreece
  6. 6.Environmental Research Laboratory, Institute of Nuclear Technology and Radiation Protection, NCSR “Demokritos”AthensGreece

Personalised recommendations