Journal of Materials Science

, Volume 46, Issue 2, pp 365–371 | Cite as

The effects of calcium and yttrium additions on the microstructure, mechanical properties and biocompatibility of biodegradable magnesium alloys

Article

Abstract

In this study, the effects of calcium (Ca) and yttrium (Y) on the microstructure, mechanical properties, corrosion behaviour and biocompatibility of magnesium (Mg) alloys, i.e. Mg–xCa (x = 0.5, 1.0, 2.0, 5.0, 10.0, 15.0 and 20.0%, wt%, hereafter) and Mg–1Ca–1Y, were investigated. Optical microscopy, X-ray diffractometry (XRD), compressive and Vickers hardness testing were used for the characterisation and evaluation of the microstructure and mechanical properties. The in vitro cytotoxicity of the alloys was assessed using osteoblast-like SaOS2 cells. The corrosion behaviour of these alloys was evaluated by soaking the alloys in simulated body fluid (SBF) and modified minimum essential medium (MMEM) at 37 °C in a humidified atmosphere with 5% CO2. Results indicated that the increase of the Ca content enhances the compressive strength, elastic modulus and hardness of the Mg–Ca alloys, but deteriorates the ductility, corrosion resistance and biocompatibility of the Mg–Ca alloys. The Y addition leads to an increase in the ductility; but a decrease in the compressive strength, hardness, corrosion resistance and biocompatibility of the Mg–1Ca–1Y alloy when compared to the Mg–1Ca alloy. Solutions of SBF and MMEM with the immersion of Mg–xCa and Mg–1Ca–1Y alloys show strong alkalisation. Our research results indicate that Mg–xCa alloys with Ca additions less than 1.0 wt% exhibited good biocompatibility, low corrosion rate as well as appropriate elastic modulus and strength; whilst the Y is not a proper element for Mg alloys for biomedical application due to its negative effects to the corrosion resistance and biocompatibility.

Notes

Acknowledgements

The authors acknowledge the financial support for this research through the Australia–India Strategic Research Fund (AISRF) BF030031.

References

  1. 1.
    Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Biomaterials 27:1728CrossRefGoogle Scholar
  2. 2.
    Witte F (2010) Acta Biomater 6:1680CrossRefGoogle Scholar
  3. 3.
    Witte F, Hort N, Vogt C et al (2008) Curr Opin Solid State Mater Sci 12:63CrossRefGoogle Scholar
  4. 4.
    Witte F, Ulrich H, Palm C, Willbold E (2007) J Biomed Mater Res 81(A):757CrossRefGoogle Scholar
  5. 5.
    Witte F, Ulrich H, Rudert M, Willbold E (2007) J Biomed Mater Res 81(A):748CrossRefGoogle Scholar
  6. 6.
    Hartwig A (2001) Mutat Res Fundam Mol Mech Mutagen 475:113CrossRefGoogle Scholar
  7. 7.
    Okuma T (2001) Nutrition 17:679CrossRefGoogle Scholar
  8. 8.
    Saris N-EL, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A (2000) Clin Chim Acta 294:1CrossRefGoogle Scholar
  9. 9.
    Vormann J (2003) Mol Asp Med 24:27CrossRefGoogle Scholar
  10. 10.
    Witte F, Kaese V, Haferkamp H et al (2005) Biomaterials 26:3557CrossRefGoogle Scholar
  11. 11.
    Zreiqat H, Howlett CR, Zannettino A et al (2002) J Biomed Mater Res A 62:175CrossRefGoogle Scholar
  12. 12.
    Wen C, Guan S, Peng L, Ren C, Wang X, Hu Z (2009) Appl Surf Sci 255:6433CrossRefGoogle Scholar
  13. 13.
    Wen CE, Mabuchi M, Yamada Y, Shimojima K, Chino Y, Asahina T (2001) Scr Mater 45:1147CrossRefGoogle Scholar
  14. 14.
    Wen C, Yamada Y, Shimojima K, Chino Y, Hosokawa H, Mabuchi M (2003) Mater Sci Forum 419–422:1001CrossRefGoogle Scholar
  15. 15.
    Currey JD (2006) Bones structure and mechanics. Princeton University Press, New JerseyGoogle Scholar
  16. 16.
    Wang H, Shi ZM, Yang K (2008) Adv Mater Res 32:207CrossRefGoogle Scholar
  17. 17.
    Wang XJ, Li YC, Hodgson PD, Wen CE (2007) Mater Forum 31:56Google Scholar
  18. 18.
    Li YC, Xiong JX, Wong CS, Hodgson PD, Wen CE (2009) Tissue Eng Part A 15:3151CrossRefGoogle Scholar
  19. 19.
    Gibson LG, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, CambridgeGoogle Scholar
  20. 20.
    Denkena B, Lucas A (2007) CIRP Ann Manuf Technol 56:113CrossRefGoogle Scholar
  21. 21.
    Hassel T, Bach FW, Golovko A, Krause C (2006) In: Proceedings of the International Symposium Magnesium Technology Global Age, Montreal, QC, Canada, p 359Google Scholar
  22. 22.
    Liang H, Wan YZ, He F et al (2007) Appl Surf Sci 253:3326CrossRefGoogle Scholar
  23. 23.
    Qiao L, Gao J, Wang Y, Wang S (2007) Mater Sci Forum 546–549:459CrossRefGoogle Scholar
  24. 24.
    López HY, Cortés DA, Escobedo S, Mantovani D (2006) Key Eng Mater 309–311:453CrossRefGoogle Scholar
  25. 25.
    Pietak A, Mahoney P, Dias George J, Staiger Mark P (2008) J Mater Sci Mater Med 19:407CrossRefGoogle Scholar
  26. 26.
    Hänzi AC, Gerber I, Schinhammer M, Löffler JF, Uggowitzer PJ (2010) Acta Biomater 6:1824CrossRefGoogle Scholar
  27. 27.
    Koch C, Scattergood R, Youssef K, Chan E, Zhu Y (2010) J Mater Sci 45:4725. doi: 10.1007/s10853-010-4252-7 CrossRefGoogle Scholar
  28. 28.
    Figueiredo R, Langdon T (2010) J Mater Sci 45:4827. doi: 10.1007/s10853-010-4589-y CrossRefGoogle Scholar
  29. 29.
    Figueiredo R, Langdon T (2009) J Mater Sci 44:4758. doi: 10.1007/s10853-009-3725-z CrossRefGoogle Scholar
  30. 30.
    Steinemann SG (1980) In: Winter GD, Leray JL, De Goot K (eds) Evaluation of biomaterials, advances in biomaterials. Wiley, ChichesterGoogle Scholar
  31. 31.
    Okazaki Y, Rao S, Tateishi T, Ito Y (1998) Mater Sci Eng A 243:250CrossRefGoogle Scholar
  32. 32.
    Denkena B, Witte F, Podolsky C, Lucas A (2005) In: Proceedings of the 5th euspen International Conference, Montpellier, France, p 233–236Google Scholar
  33. 33.
    Dabah E, Ben-Hamu G, Lisitsyn V, Eliezer D, Shin K (2010) J Mater Sci 45:3007. doi: 10.1007/s10853-010-4302-1 CrossRefGoogle Scholar
  34. 34.
    Aghion E, Levy G (2010) J Mater Sci 45:3096. doi: 10.1007/s10853-010-4317-7 CrossRefGoogle Scholar
  35. 35.
    Yao HB, Li Y, Wee ATS (2003) Electrochim Acta 48:4197CrossRefGoogle Scholar
  36. 36.
    Miller PL, Shaw BA, Wendt RG, Moshier WC (1995) Corrosion 51:922CrossRefGoogle Scholar
  37. 37.
    He W, Zhang E, Yang K (2010) Mater Sci Eng C 30:167CrossRefGoogle Scholar
  38. 38.
    Nayab SN, Jones FH, Olsen I (2007) Biomaterials 28:38CrossRefGoogle Scholar
  39. 39.
    ASTM-International (2004) G 31–72 ASTM International, West ConshohockenGoogle Scholar
  40. 40.
    Wang XJ, Li YC, Lin JG, Hodgson PD, Wen CE (2008) J Mater Res 23:1682CrossRefGoogle Scholar
  41. 41.
    International organization for Standardization (1999) ISO 10993-5, ANSI/AAMI, Arlington, VAGoogle Scholar
  42. 42.
    Kruse PF, Patterson MK (1973) Tissue culture, methods and application. Academic Press, New YorkGoogle Scholar
  43. 43.
    Kim JH, Kang NE, Yim CD, Kim BK (2009) Mater Sci Eng A 525:18CrossRefGoogle Scholar
  44. 44.
    Li SS, Tang B, Zeng DB (2007) J Alloy Compd 437:317CrossRefGoogle Scholar
  45. 45.
    Li P, Tang B, Kandalova EG (2005) Mater Lett 59:671CrossRefGoogle Scholar
  46. 46.
    Wang Q, Chen W, Zeng X et al (2001) J Mater Sci 36:3035. doi: 10.1023/A:1017927109291 CrossRefGoogle Scholar
  47. 47.
    Watanabe H, Yamaguchi M, Takigawa Y, Higahshi K (2007) Mater Sci Eng A 454–455:384Google Scholar
  48. 48.
    Hakamada M, Shimizu K, Yamashita T, Watazu A, Saito N, Iwasaki H (2010) J Mater Sci 45:719. doi: 10.1007/s10853-009-3990-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Institute for Technology Research and InnovationDeakin UniversityGeelongAustralia

Personalised recommendations