Journal of Materials Science

, Volume 46, Issue 1, pp 90–93 | Cite as

Dielectric properties of organosilicons from first principles

  • C. C. Wang
  • R. RamprasadEmail author


Density functional perturbation theory calculations have been performed to determine the dielectric constant of Si “doped” polyethylene (PE). Substitution of C atoms in PE by Si ranging from 0 to 100% has been considered. Both the electronic and ionic contributions to the dielectric constant increase with increasing Si content. These increases are attributed, respectively, to enhanced σ conjugation and increased IR vibrational intensity of modes involving Si containing bonds (owing to their softness and polarity).


Dielectric Constant Ionic Contribution Polysilane Constant Tensor Density Functional Perturbation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This paper is based upon work supported by the Office of Naval Research. The authors would also like to thank Steve Boggs for a critical reading of the manuscript and several useful discussions.


  1. 1.
    Yang C, Lin YH, Nan CW (2009) Carbon 47:1096CrossRefGoogle Scholar
  2. 2.
    Nalwa HS (1999) Handbook of low and high dielectric constant materials and their applications, Vol. 2, Chapter 9. Academic Press, New YorkGoogle Scholar
  3. 3.
    Barshaw EJ, White J, Chait MJ, Cornette JB, Bustamante J, Folli F, Biltchick D, Borelli G, Picci G, Rabuffi M (2007) IEEE Trans Magn 43:223CrossRefGoogle Scholar
  4. 4.
    Chu B, Zhou X, Ren KL, Neese B, Lin M, Wang Q, Bauer F, Zhang QM (2006) Science 313:334CrossRefGoogle Scholar
  5. 5.
    Wolak MA, Pan M-J, Wan A, Shirk JS, Mackey M, Hiltner A, Baer E, Flandin L (2008) Appl Phys Lett 92:113301CrossRefGoogle Scholar
  6. 6.
    An AL, Boggs SA (2006) What is ‘Nano’ in the Context of a Filled Dielectric. In: Proceedings of the 2006 IEEE international symposium on electrical insulation, TorontoGoogle Scholar
  7. 7.
    Tomer V, Randall CA (2008) J Appl Phys 104:074106CrossRefGoogle Scholar
  8. 8.
    Miao MS, Zhang ML, Van Doren VE (2001) J Chem Phys 115:11317CrossRefGoogle Scholar
  9. 9.
    Kresse G, Furthmuller J (1996) Phys Rev B 54:11169CrossRefGoogle Scholar
  10. 10.
    Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiol-hais C (1992) Phys Rev B 46:6671CrossRefGoogle Scholar
  11. 11.
    Blöchl PE (1994) Phys Rev B 50:17953CrossRefGoogle Scholar
  12. 12.
    Kresse G, Joubert D (1999) Phys Rev B 59:1758CrossRefGoogle Scholar
  13. 13.
    Kavesh S, Schultz JM (1970) Polym Sci A 2:8243Google Scholar
  14. 14.
    Schaufele RG, Schimanouchi T (1967) J Chem Phys 42:2605Google Scholar
  15. 15.
    Fujihira M, Inokuchi H (1972) Chem Phys Lett 17:554CrossRefGoogle Scholar
  16. 16.
    Miller RD, Michl J (1989) Chem Rev 89:1359CrossRefGoogle Scholar
  17. 17.
    Bicerano J (2002) Prediction of polymer properties, Chapter 9, 3rd edn. Marcel Dekker, IncGoogle Scholar
  18. 18.
    Isaka H, Teramae H, Fujiki M, Matsumoto N (1995) Macromolecules 28:4733CrossRefGoogle Scholar
  19. 19.
    Schepers T, Michl J (2002) J Phys Org Chem 15:490CrossRefGoogle Scholar
  20. 20.
    Gonze X, Lee C (1996) Phys Rev B 55:10355CrossRefGoogle Scholar
  21. 21.
    Gonze X (1996) Phys Rev B 55:10337CrossRefGoogle Scholar
  22. 22.
    Giannozzi P, Baroni S (1994) J Chem Phys 100:8537CrossRefGoogle Scholar
  23. 23.
    Porezag D, Pederson MR (1996) Phys Rev B 54:7830CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Chemical, Materials, and Biomolecular Engineering, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations