Journal of Materials Science

, Volume 46, Issue 3, pp 824–831

Electrical, thermal, and mechanical properties of polyarylene ether nitriles/graphite nanosheets nanocomposites prepared by masterbatch route

  • Yingqing Zhan
  • Yajie Lei
  • Fanbin Meng
  • Jiachun Zhong
  • Rui Zhao
  • Xiaobo Liu
Article

Abstract

Graphite nanosheets (GN) reinforced polyarylene ether nitriles (PEN) nanocomposites were successfully fabricated through masterbatch route and investigated for morphological, thermal electrical, mechanical, and rheological properties. The SEM images showed that GN were well coated by phthalonitrile prepolymer (PNP) and dispersed in the PEN matrix. Thermal degradation and heat distortion temperature of PEN/GN nanocomposites increased substantially with the increment of GN content up to 10 wt%. Electrical conductivity of the polymer was dramatically enhanced at low loading level of GN; the electrical percolation of was around 5 wt% of GN. The mechanical properties of the nanocomposites were also investigated and showed significant increase with GN loading. For 10 wt% of GN-reinforced PEN composite, the tensile strength increased by about 18%, the tensile modulus increased by about 30%, the flexural strength increased by about 25%, and the flexural modulus increased by 90%. Rheological properties of the PEN/GN nanocomposites also showed a sudden change with the GN loading content; the percolation threshold was in the range of 3–4 wt% of GN.

References

  1. 1.
    Saxena A, Sadhana R, Rao VL, Kanakavel M, Ninan KN (2003) Polym Bull 50:219Google Scholar
  2. 2.
    Saxena A, Rao VL, Ninan KN (2003) Eur Polym J 39:57CrossRefGoogle Scholar
  3. 3.
    Li C, Gu Y, Liu XB (2005) Mater Lett 60:137CrossRefGoogle Scholar
  4. 4.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Kufushima Y, Kurauchi T, Kamigaito O (1993) J Mater Res 8:1185CrossRefGoogle Scholar
  5. 5.
    Giannelis EP (1996) Adv Mater 8:29CrossRefGoogle Scholar
  6. 6.
    Lebaron PC, Wang Z, Pinnavaia TJ (1999) Appl Clay Sci 15:11CrossRefGoogle Scholar
  7. 7.
    Ajayan PM, Schadler LS, Giannaris C, Rubio A (2000) Adv Mater 12:750CrossRefGoogle Scholar
  8. 8.
    Thostenson ET, Ren Z, Chou TW (2001) Compos Sci Technol 61:1899CrossRefGoogle Scholar
  9. 9.
    Grujicic M, Cao G (2004) J Mater Sci 39:4441. doi:10.1023/B:JMSC.0000034136.11779.96 CrossRefGoogle Scholar
  10. 10.
    Guo H, Sreekumar TV, Liu T, Minus M, Kumar S (2005) Polymer 46:3001CrossRefGoogle Scholar
  11. 11.
    Ezquerra TA, Kulescza M, Balta-Calleja FJ (1991) Synth Met 41:915CrossRefGoogle Scholar
  12. 12.
    Saunders DS, Galea SC, Deirmendjian GK (1993) Composite 24:309CrossRefGoogle Scholar
  13. 13.
    Stankovich S, Dikin DA, Dommett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Nature 442:282CrossRefGoogle Scholar
  14. 14.
    Wakabayashi K, Pierre C, Dikin DA, Ruoff RS, Ramanathan T, Brinson LC, Torkelson JM (2008) Macromolecules 41:1905CrossRefGoogle Scholar
  15. 15.
    Zhou LC, Lin JS, Lin HF, Chen GH (2008) J Mater Sci 43:4886. doi:10.1007/s10853-008-2710-2 CrossRefGoogle Scholar
  16. 16.
    Chen GH, Weng WG, Wu DJ, Wu CL, Lu JR, Wang PP, Chen XF (2004) Carbon 42:753CrossRefGoogle Scholar
  17. 17.
    Li C, Tang AB, Zou Y, Liu XB (2005) Mater Lett 59:59CrossRefGoogle Scholar
  18. 18.
    Liu XB, Long SR, Luo DW, Chen WJ, Cao GP (2008) Mater Lett 62:19CrossRefGoogle Scholar
  19. 19.
    Kalaitzidou K, Fukushima H, Drzal LT (2007) Carbon 45:1446CrossRefGoogle Scholar
  20. 20.
    Sumin K, Inhwan D, Drzal LT (2009) Macromol Mater Eng 294:196CrossRefGoogle Scholar
  21. 21.
    Lu W, Wu DJ, Wu CL, Chen GH (2006) J Mater Sci 41:1785. doi:10.1007/s10853-006-3946-3 CrossRefGoogle Scholar
  22. 22.
    Chen GH, Wu DJ, Weng WG, Wu CL (2003) Carbon 41:579CrossRefGoogle Scholar
  23. 23.
    Keller TM (1993) Polymer 34:952CrossRefGoogle Scholar
  24. 24.
    Sastri SB, Keller TM (1998) J Polym Sci A 36:1885CrossRefGoogle Scholar
  25. 25.
    Zhong JC, Jia K, Zhao R, Liu XB (2010) J Appl Polym Sci 116:2668Google Scholar
  26. 26.
    Keller TM (1988) J Polym Sci A 26:3199CrossRefGoogle Scholar
  27. 27.
    Jiang X, Drzal LT (2009) Polym Compos 31:1091Google Scholar
  28. 28.
    Wu X, Qi S, He J, Duan G (2010) J Mater Sci 45:483. doi:10.1007/s10853-009-3965-y CrossRefGoogle Scholar
  29. 29.
    Balberg I, Binenbaum N, Wagner N (1984) Phys Rev Lett 52:1465CrossRefGoogle Scholar
  30. 30.
    Prashantha K, Soulestin J, Lacrampe MF, Claes M, Dupin G, Krawczak P (2008) Express Polym Lett 10:735CrossRefGoogle Scholar
  31. 31.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Kurauchi T, Kamigaito O (1993) J Polym Sci A 31:983CrossRefGoogle Scholar
  32. 32.
    Du FM, Scogna RC, Zhou W, Brand S, Fischer JE, Winey K (2004) Macromolecules 37:9048CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Yingqing Zhan
    • 1
  • Yajie Lei
    • 1
  • Fanbin Meng
    • 1
  • Jiachun Zhong
    • 1
  • Rui Zhao
    • 1
  • Xiaobo Liu
    • 1
  1. 1.Research Branch of Functional Materials, Institute of Microelectronic & Solid State ElectronicUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China

Personalised recommendations