Advertisement

Journal of Materials Science

, Volume 46, Issue 3, pp 797–805 | Cite as

Optimized synthesis method for K/Co3O4 catalyst towards direct decomposition of N2O

  • Hiroaki Yoshino
  • Chie H. Ohnishi
  • Saburo Hosokawa
  • Kenji Wada
  • Masashi InoueEmail author
Article

Abstract

The potassium-doped Co3O4 catalysts were prepared by impregnation of potassium sources on commercial cobalt carbonate and on the precursors synthesized by homogeneous precipitation, combustion with glycine, gradual oxidation, and hydrothermal methods. The activities of these catalysts for the direct decomposition of nitrous oxide in the presence of oxygen with or without water vapor were examined. The effects of potassium sources on the catalyst activity were also examined by impregnation of various potassium salts on commercial cobalt carbonate. The catalyst prepared by impregnation of an aqueous solution of KOH on commercial cobalt carbonate showed the highest activity. The catalysts prepared by various methods were analyzed by powder X-ray diffraction, N2 adsorption, scanning electron microscope, temperature-programmed reduction with H2, temperature-programmed desorption of O2, and X-ray photoelectron spectroscopy. These results suggest that crystallite size and reduction property are key factors for the activity of the catalyst for the direct decomposition of nitrous oxide in the presence of oxygen.

Keywords

Co3O4 Hydrotalcite Direct Decomposition Homogeneous Precipitation Method Co3O4 Catalyst 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    IPCC Third Assessment Report – Climate Change 2001: The Scientific Basis, The Intergovernmental Panel on Climate Change, Working Group I. Original report is available at: http://www.grida.no/publications/other/ipcc%5Ftar/?src=/climate/ipcc_tar/wg1/index.htm
  2. 2.
    Kapteijn F, Rodriguez-Mirasol J, Moulijn JA (1996) Appl Catal B: Environ 9:25Google Scholar
  3. 3.
    Centi G, Galli A, Montanari B, Perathoner S, Vaccari A (1997) Catal Today 35:113CrossRefGoogle Scholar
  4. 4.
    Haber J, Machej T, Janas J, Nattich M (2004) Catal Today 90:15CrossRefGoogle Scholar
  5. 5.
    Tzitzios VK, Georgakilas V (2005) Chemosphere 59:887CrossRefGoogle Scholar
  6. 6.
    Haber J, Nattich M, Machej T (2008) Appl Catal B: Environ 77:278CrossRefGoogle Scholar
  7. 7.
    Drago RS, Jurczyk K, Kob N (1997) Appl Catal B: Environ 13:69CrossRefGoogle Scholar
  8. 8.
    Satsuma A, Maeshima H, Watanabe K, Suzuki K, Hattori T (2000) Catal Today 63:347CrossRefGoogle Scholar
  9. 9.
    Scagnelli A, di Valentin C, Pacchioni G (2006) Surf Sci 600:386CrossRefGoogle Scholar
  10. 10.
    Russo N, Mescia D, Fino D, Saracco G, Specchia V (2007) Ind Eng Chem Res 46:4226CrossRefGoogle Scholar
  11. 11.
    Pasha N, Lingaiah N, Reddy PSS, Prasad PSS (2009) Catal Lett 127:101CrossRefGoogle Scholar
  12. 12.
    da Cruz RS, Mascarenhas AJS, Andrade HMC (1998) Appl Catal B: Environ 18:223CrossRefGoogle Scholar
  13. 13.
    Pérez-Ramírez J, Kapteijn F, Mul G, Moulijn JA (2001) Chem Commun 693Google Scholar
  14. 14.
    Guesmi H, Berthomieu D, Kiwi-Minsker L (2008) J Phys Chem C 112:20319CrossRefGoogle Scholar
  15. 15.
    Zakirov V, Sweeting M, Lawtence T, Sellers J (2001) Acta Asteronaut 48:353CrossRefGoogle Scholar
  16. 16.
    Zakirov V, Zhang H-Y (2008) Aerospace Sci Technol 12:318CrossRefGoogle Scholar
  17. 17.
    Shimizu A, Tanaka K, Fujimori M (2000) Chemosphere Global Change Sci 2:425CrossRefGoogle Scholar
  18. 18.
    Shimizu A, Miura K, Tagawa K, Kan H (2004) J Chem Eng Jpn 37:808CrossRefGoogle Scholar
  19. 19.
    Stelmachowski P, Zasada F, Maniak G, Granger P, Inger M, Wilk M, Kotarba A, Sojka Z (2009) Catal Lett 130:637CrossRefGoogle Scholar
  20. 20.
    Schmid G, Keller N (1950) Naturwiss 37:42CrossRefGoogle Scholar
  21. 21.
    Amphlett CB (1954) Trans Faraday Soc 50:273CrossRefGoogle Scholar
  22. 22.
    Volpe ML, Reddy JF (1967) J Catal 7:76CrossRefGoogle Scholar
  23. 23.
    Armor JN, Braymer TA, Farris TS, Li Y, Petrocelli FP, Weist EL, Kannan S, Swamy CS (1996) Appl Catal B: Environ 7:397CrossRefGoogle Scholar
  24. 24.
    Kannan S, Swamy CS (1999) Catal Today 53:725CrossRefGoogle Scholar
  25. 25.
    Chellam U, Xu ZP, Zeng HC (2000) Chem Mater 12:650CrossRefGoogle Scholar
  26. 26.
    Yan L, Ren T, Wang X, Ji D, Suo J (2003) Appl Catal B: Environ 45:85CrossRefGoogle Scholar
  27. 27.
    Yan L, Ren T, Wang X, Gao Q, Ji D, Suo J (2003) Catal Commun 4:505CrossRefGoogle Scholar
  28. 28.
    Obalová L, Fíla (2007) Appl Catal B: Environ 70:353CrossRefGoogle Scholar
  29. 29.
    Armor JN, Braymer TA, Li Y, Farris TS (1995) USP 005472677 (Engelhard Co)Google Scholar
  30. 30.
    Pérez-Ramírez J, Garecía-Cortés JM, Kapteijn F, Illán-Gómez MJ, Ribera A, de Lecea CS-M, Moulijn JA (2000) Appl Catal B: Environ 25:191CrossRefGoogle Scholar
  31. 31.
    Ohnishi C, Asano K, Iwamoto S, Inoue M (2006) Stud Surf Sci Catal 162:737CrossRefGoogle Scholar
  32. 32.
    Ohnishi C, Asano K, Iwamoto S, Chikama K, Inoue M (2007) Catal Today 120:145CrossRefGoogle Scholar
  33. 33.
    Asano K, Ohnishi C, Iwamoto S, Shioya Y, Inoue M (2008) Appl Catal B: Environ 78:242CrossRefGoogle Scholar
  34. 34.
    Xue L, Zhang C, He H, Teraoka Y (2007) Catal Today 126:449CrossRefGoogle Scholar
  35. 35.
    Pasha N, Lingaiah N, Babu NS, Reddy PSS, Presad PSS (2008) Catal Commun 10:132CrossRefGoogle Scholar
  36. 36.
    Stelmachowski P, Maniak G, Kotarba A, Sojka Z (2009) Catal Commun 10:1062CrossRefGoogle Scholar
  37. 37.
    Zasada F, Stelmachowski P, Maniak G, Paul J-F, Kotarba A, Sojaka Z (2009) Catal Lett 127:131CrossRefGoogle Scholar
  38. 38.
    Abu-Zied BM, Soliman SA (2009) Catal Lett 132:299CrossRefGoogle Scholar
  39. 39.
    Cheng H, Huang Y, Wang A, Li L, Wang X, Zhang T (2009) Appl Catal B: Environ 89:391CrossRefGoogle Scholar
  40. 40.
    Xue L, He H, Liu C, Zhang C, Zhang B (2009) Environ Sci Technol 43:890CrossRefGoogle Scholar
  41. 41.
    Obalová L, Karásková K, Jirátová K, Kovanda F (2009) Appl Catal B: Environ 90:132CrossRefGoogle Scholar
  42. 42.
    Park PW, Kil JK, Kung HH, Kung MC (1998) Catal Today 42:51CrossRefGoogle Scholar
  43. 43.
    Haneda M, Kintaichi Y, Bion N, Hamada H (2003) Appl Catal B: Environ 46:473CrossRefGoogle Scholar
  44. 44.
    Pengpanich S, Meeyoo V, Rirksomboon T, Bunyakiat K (2002) Appl Catal A: Gen 234:221CrossRefGoogle Scholar
  45. 45.
    Polizzi S, Bucella S, Speghini A, Vetrone F, Naccache R, Boyer JC, Capobianco JA (2004) Chem Mater 16:1330CrossRefGoogle Scholar
  46. 46.
    Xu R, Zeng HC (2003) J Phys Chem B 107:926CrossRefGoogle Scholar
  47. 47.
    Wang Z, Chen X, Zhang M, Qian Y (2005) Solid State Sci 7:13CrossRefGoogle Scholar
  48. 48.
    Moulder F, Stickle WF, Sobol PE, Bomben KD (1992) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Co, Eden Prairie (USA)Google Scholar
  49. 49.
    Xu R, Zeng HC (2003) J Phys Chem B 107:12643CrossRefGoogle Scholar
  50. 50.
    Haneda M, Nakamura I, Fujitani T, Hamada H (2006) Catal Surv Asia 9:207CrossRefGoogle Scholar
  51. 51.
    Avila AG, Barrera EC, Huerta LA, Muhl A (2004) Solar Energ Mater Solar Cell 82:269CrossRefGoogle Scholar
  52. 52.
    Sexton BA, Hughes AE, Turney TW (1986) J Catal 97:390CrossRefGoogle Scholar
  53. 53.
    Voß M, Borgmann D, Wedler G (2002) J Catal 212:10CrossRefGoogle Scholar
  54. 54.
    Xu X-L, Yang E, Li J-Q, Li Y, Chen W-K (1991) ChemCatChem 1:384CrossRefGoogle Scholar
  55. 55.
    Winter ERS (1969) J Catal 15:144CrossRefGoogle Scholar
  56. 56.
    Cunningham J, Penny AL (1974) J Phys Chem 78:870CrossRefGoogle Scholar
  57. 57.
    Henderson MA, Szanyi J, Peden CHF (2003) Catal Today 85:251CrossRefGoogle Scholar
  58. 58.
    Zhu J, Albertsma S, van Ommen JG, Lefferts L (2005) J Phys Chem B 109:9550CrossRefGoogle Scholar
  59. 59.
    Chen W-K, Sun B-Z, Wang X, Lu C-H (2008) J Theo Comput Chem 7:263CrossRefGoogle Scholar
  60. 60.
    Dandekar A, Vannice MA (1999) Appl Catal B: Environ 22:179CrossRefGoogle Scholar
  61. 61.
    Zhu Z, Lu GQ, Zhuang Y, Shen D (1999) Energy Fuels 13:763CrossRefGoogle Scholar
  62. 62.
    Pinna F, Scarpa M, Strukul G, Guglielminotti E, Boccuzzi F, Manzoli M (2000) J Catal 192:158CrossRefGoogle Scholar
  63. 63.
    Fanning PE, Vannice MA (2002) J Catal 207:166CrossRefGoogle Scholar
  64. 64.
    Nobukawa T, Yoshida M, Okumura K, Tomishige K, Kunimori K (2005) J Catal 229:374CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hiroaki Yoshino
    • 1
  • Chie H. Ohnishi
    • 1
  • Saburo Hosokawa
    • 1
  • Kenji Wada
    • 1
  • Masashi Inoue
    • 1
    Email author
  1. 1.Department of Energy and Hydrocarbon Chemistry, Graduate School of EngineeringKyoto UniversityKatsuraJapan

Personalised recommendations