Journal of Materials Science

, Volume 46, Issue 3, pp 787–796 | Cite as

A cure kinetics, diffusion controlled and temperature dependent, identification of the Araldite LY556 epoxy

  • N. RabearisonEmail author
  • Ch. Jochum
  • J. C. Grandidier


The curing of the LY556 epoxy system, a DGEBA-type epoxy resin with an anhydride hardener HY917 and a l-methyl imidazole DY 070 accelerator, mass ratio 100:90:2, was investigated by isothermal and nonisothermal differential scanning calorimetry (DSC). Dynamic measurements were used to evaluate the total, ultimate, heat of the epoxy resin thermosetting reaction and enable experimental conversion determination for isothermal curing. Aiming further finite element modelling of the curing, this article especially focuses on a complete, temperature dependent, cure kinetics parameters identification strategy with the Kamal and Sourour phenomenological model expanded by a diffusion factor. A special attention was given for diffusion description which allows the identification of a fixed order of reaction for the LY556 epoxy resin. Based on isothermal conversion data analysis, the methodology for cure kinetics parameters identification is presented. This led to a temperature dependent identification of all cure kinetics parameters of the LY556 epoxy blend, including diffusion control description and corresponding temperature dependency. Cure kinetics identification quality and importance of diffusion control phenomenon for the curing of the epoxy are then highlighted by computed conversion results that fit almost well the data in the range of temperature used for identification.


Differential Scanning Calorimetry Differential Scanning Calorimetry Data Cure Kinetic Cure Kinetics Differential Scanning Calorimetry Scan 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This study was funded by the Brest Metropole Oceanne council of the city of Brest in Brittany and the Social European Funding (FSE). The material support of the ENSIETA graduate school of engineering and of the IFREMER Institute in Brittany is gratefully acknowledged.


  1. 1.
    Kamal MR, Sourour S (1976) Thermochim Acta 14(1–2):41Google Scholar
  2. 2.
    Fournier J, Williams G, Dutch C, Aldridge GA (1996) Macromolecules 29(22):7097CrossRefGoogle Scholar
  3. 3.
    Prime RB (1981) In: Turi EA (ed) Thermal characterization of polymeric materials. Academic Press, New York, p 435Google Scholar
  4. 4.
    Barton JM (1985) In: Dusek K (ed) Advances in polymer sciences. Springer, Berlin, Heidelberg, New York, p 111Google Scholar
  5. 5.
    Duswalt AA (1974) Thermochim Acta 8:57CrossRefGoogle Scholar
  6. 6.
    Fava RA (1968) Polymer 9:137CrossRefGoogle Scholar
  7. 7.
    Keenan M (1987) J Appl Polym Sci 33:1725CrossRefGoogle Scholar
  8. 8.
    Dusi MR, Lee WI, Ciriscioli PR, Springer GS (1987) J Compos Mater 21:243CrossRefGoogle Scholar
  9. 9.
    Hsiao K-T, Little R, Restrepo O, Minaie B (2006) Compos A Appl Sci Manuf 37(6):925CrossRefGoogle Scholar
  10. 10.
    Sunil CJ, Liu XL, Lam YC (1998) J Compos Sci Technol 59:1003Google Scholar
  11. 11.
    Jianhua L, Sunil CJ, Lam YC (2001) J Compos Sci Technol 62:457Google Scholar
  12. 12.
    Boggeti TA, Gillespie JW Jr (1991) J Compos Mater 25:239Google Scholar
  13. 13.
    Horie K, Hiura H, Sawada M, Mita I, Kambe H (1970) J Polym Sci 8:1357Google Scholar
  14. 14.
    Kamal MR (1973) Polym Eng Sci 13:59CrossRefGoogle Scholar
  15. 15.
    Harsch M, Karger-Kocsis J, Holst M (2007) Eur Polym J 43:1168CrossRefGoogle Scholar
  16. 16.
    Lopez J, Lopez-Bueno I, Nogueira P, Ramirez C, Abad MJ, Barral L, Cano J (2001) Polym J 42:1669CrossRefGoogle Scholar
  17. 17.
    Perrin FX, Nguyen HTM, Vernet JL (2007) Eur Polym J 43:5107. doi: 10.1016/j.eurpolymj.2007.09.020 CrossRefGoogle Scholar
  18. 18.
    Van Mele B, Van Assche G, Van Hemelrijck A (1999) J Reinf Plast Compos 18(10):855Google Scholar
  19. 19.
    Van Assche G (1995) Thermochim Acta 268:121CrossRefGoogle Scholar
  20. 20.
    Um Moon-Kwang, Daniel IsaacM, Hwang Byung-Sun (2002) Compos Sci Technol 62:29CrossRefGoogle Scholar
  21. 21.
    Rabearison N, Jochum Ch, Grandidier JC (2009) ViaMare BySea 3:14Google Scholar
  22. 22.
    Bejoy F, Lakshmana R, Van den Poel G, Posada F, Groeninckx G, Ramaswamy R, Sabu T (2006) Polymer 47:5411CrossRefGoogle Scholar
  23. 23.
    Flory PJ (1953) Principles of polymer chemistry. Cornell Univ. Press, IthacaGoogle Scholar
  24. 24.
    Jochum Ch, Grandidier JC, Smaali MA (2008) Compos A Appl Sci Manuf 39(1):19CrossRefGoogle Scholar
  25. 25.
    Abichou H, Zahrouni H, Potier-Ferry M (2002) Comput Methods Appl Mech Eng 191(51–52):5795CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Ensieta/Mechanics of Naval and Offshore Structures Research Centre/Lbms (EA 4325)Brest Cedex 9France
  2. 2.EnsmaFuturoscope Chasseneuil CedexFrance

Personalised recommendations