Advertisement

Journal of Materials Science

, Volume 46, Issue 1, pp 69–76 | Cite as

Motion of liquid droplets on a superhydrophobic oleophobic surface

  • Hoon Joo LeeEmail author
  • Jeffery R. Owens
Article

Abstract

Developing a superhydrophobic oleophobic material is achieved by two criteria: low surface energy and properly designed surface morphology. The relationships among surface tensions, contact angles, contact angle hystereses, roll-off angles, and surface morphologies of such materials are studied. Numerical formulae related to the surface energy of liquids and solids are used to predict the wetting behavior of superhydrophobic and oleophobic materials. Using chemical and geometrical modifications, a superhydrophobic oleophobic surface was prepared. Good agreement between the predicted and measured contact angles and roll-off angles were obtained. The effect of the contact angle hysteresis on the roll-off angle is described to understand the motion of a droplet when the droplet begins to roll off.

Keywords

Contact Angle Water Contact Angle Dodecane Contact Angle Hysteresis Weft Yarn 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This material was sponsored by the Air Force Research Laboratory (AFRL) under grant number FA8650-07-1-5903. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon. We also appreciate support from the Defense Threat Reduction Agency-Joint Science and Technology Office for Chemical and Biological Defense (grant number HDTRA1-08-1-0049) and US Army Natick Soldier Research Development and Engineering Center (NSRDEC).

References

  1. 1.
    Cai Y, Li Q, Wei Q, Wu Y, Song L, Hu Y (2008) J Mater Sci 43:6132. doi: 10.1007/s10853-008-2921-6 CrossRefGoogle Scholar
  2. 2.
    Lee B, Dai G (2009) J Mater Sci 44:4848. doi: 10.1007/s10853-009-3739-6 CrossRefGoogle Scholar
  3. 3.
    Pascual M, Balart R, Sanchez L, Fenollar O, Calvo O (2008) J Mater Sci 43:4901. doi: 10.1007/s10853-008-2712-0 CrossRefGoogle Scholar
  4. 4.
    Berketis K, Tzetzis D (2009) J Mater Sci 44:3578. doi: 10.1007/s10853-009-3485-9s CrossRefGoogle Scholar
  5. 5.
    Huang X, Fang X, Lu Z, Chen S (2009) J Mater Sci 44:4522. doi: 10.1007/s10853-009-3660-z CrossRefGoogle Scholar
  6. 6.
    Lee HJ (2009) J Mater Sci 44:4645. doi: 10.1007/s10853-009-3711-5 CrossRefGoogle Scholar
  7. 7.
    Ahuja A, Taylor JA, Lifton V, Sidorenko AA, Salamon TR, Lobaton EJ, Kolodner P, Krupenkin TN (2008) Langmuir 24:9CrossRefGoogle Scholar
  8. 8.
    Steele A, Bayer I, Loth E (2009) Nano Lett 9:501CrossRefGoogle Scholar
  9. 9.
    Tuteja A, Choi W, Mabry JM, McKinley GH, Cohen RE (2008) Proc Natl Acad Sci USA 105:18200CrossRefGoogle Scholar
  10. 10.
    Lee HJ, Willis C (2009) Chem Ind 21Google Scholar
  11. 11.
    Michielsen S, Lee HJ (2007) Langmuir 23:6004CrossRefGoogle Scholar
  12. 12.
    Leng B, Shao Z, de With G, Ming W (2009) Langmuir 25:2456CrossRefGoogle Scholar
  13. 13.
    Lee H, Owens J (2010) J Mater Sci 45:3247. doi: 10.1007/s10853-010-4332-8 CrossRefGoogle Scholar
  14. 14.
    Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546CrossRefGoogle Scholar
  15. 15.
    Wenzel RN (1936) Ind Eng Chem 28:988CrossRefGoogle Scholar
  16. 16.
    McHale G, Shirtcliffe N, Newton M (2004) Langmuir 20:10146CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.College of TextilesNorth Carolina State UniversityRaleighUSA
  2. 2.Air Force Research LaboratoryRXQLTyndall Air Force BaseUSA

Personalised recommendations