Journal of Materials Science

, Volume 45, Issue 24, pp 6763–6768 | Cite as

Interface roughness influence on exchange bias effect in La2/3Ca1/3MnO3/La1/3Ca2/3MnO3 bilayers

  • E. Restrepo-ParraEmail author
  • G. Orozco-Hernández
  • J. Urrea-Serna
  • J. F. Jurado
  • J. C. Vargas-Hernández
  • J. C. Riaño-Rojas
  • J. Restrepo


A Monte Carlo simulation study of La2/3Ca1/3MnO3/La1/3Ca2/3MnO3 bilayers exchange bias (EB) properties by using a classical Heisenberg model and Monte Carlo method with Metropolis algorithm is addressed. Samples were built atom-by-atom in order to resemble the real roughness. In this model, several contributions included nearest neighbors exchange interactions; two different interface couplings, magnetocrystalline anisotropy and Zeeman term, were considered. Here, an influence of the relaxation steps on the interface roughness is present. Our study focuses on the influence of interface roughness on hysteresis loops, particularly EB field (H ex) and coercive force (H c). Results reveal that H ex and H c decrease as the interface roughness increases.


Manganite Coercive Force Coercive Field Exchange Bias Monte Carlo Step 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial support of la Dirección Nacional de Investigaciones during the course of this research, under Project 7785. This study was also supported in part by the GES and GICM Sustainability projects and the IN565CE project of the Antioquia University.


  1. 1.
    Stout KJ, Blunt L (1995) Surf Coat Technol 71:69CrossRefGoogle Scholar
  2. 2.
    Adamson AW, Gast AP (1997) Physical chemistry of surfaces, 6th edn. Wiley-Interscience, New YorkGoogle Scholar
  3. 3.
    Bhushan B (1998) Tribol Lett 4:1CrossRefGoogle Scholar
  4. 4.
    Poon CY, Bhushan B (1995) Wear 190:76CrossRefGoogle Scholar
  5. 5.
    Bland JAC, Heinrich B (eds) (1994) Ultrathin magnetic structures I and II. Springer, New YorkGoogle Scholar
  6. 6.
    Tien CL, Yang HM, Liu MC (2009) Thin Solid Films 517:5110CrossRefGoogle Scholar
  7. 7.
    Kools JCS (1996) IEEE Trans Magn 32:3165CrossRefADSGoogle Scholar
  8. 8.
    Engel BN et al (2005) IEEE Trans Magn 41:132CrossRefADSGoogle Scholar
  9. 9.
    Parkin SSP, Jiang X, Kaiser C, Panchula A, Roche K, Samant M (2003) Proc IEEE 91:660CrossRefGoogle Scholar
  10. 10.
    Rojas Sánchez JC, Granada M, Steren LB, Mazzaro I, Mosca DH (2007) Appl Surf Sci 254:219CrossRefADSGoogle Scholar
  11. 11.
    Liu C, Yu C, Jiang H, Shen L, Alexander C (2000) J Appl Phys 87:6644CrossRefADSGoogle Scholar
  12. 12.
    Nogués J, Moran TJ, Lederman D, Schuller IK, Rao KV (1999) Phys Rev B 59:6984CrossRefADSGoogle Scholar
  13. 13.
    Lederman D, Nogués J, Schuller IK (1997) Phys Rev B 56:2332CrossRefADSGoogle Scholar
  14. 14.
    Nogues J, Lederman D, Schuller IK (1996) Appl Phys Lett 68:3186CrossRefADSGoogle Scholar
  15. 15.
    Nascimento VP, Passamani EC, Alvarenga AD, Pelegrini F, Biondo A, Baggio E (2008) J Magn Magn Mater 320:e272CrossRefADSGoogle Scholar
  16. 16.
    Uyama H, Otani Y, Fukamichi K, Iwasaky H, Sahashi M (1997) J Magn Soc Jpn 21:911CrossRefGoogle Scholar
  17. 17.
    Han DH, Zhu JG, Judy JH (1997) J Appl Phys 81:4996CrossRefADSGoogle Scholar
  18. 18.
    Zeng Z, Udpa L, Udpa SS (2006) IEEE Trans Magn 42:10Google Scholar
  19. 19.
    Christides C, Deen PP, Moutis N, Houssakou E, Bouchenoire L, Prassides K (2007) Phys Rev B 75:014432.1Google Scholar
  20. 20.
    Cotton FA (1990) Chemical applications of group theory, 3rd edn. Wiley, New YorkGoogle Scholar
  21. 21.
    Hotta T, Feiguin A, Dagotto E (2001) Phys Rev Lett 86:4922CrossRefADSPubMedGoogle Scholar
  22. 22.
    Hotta T, Malvezzi AL, Dagotto E (2000) Phys Rev B 62:9432CrossRefADSGoogle Scholar
  23. 23.
    Nachev IS (1995) J Phys Chem Solids 56:1039CrossRefADSGoogle Scholar
  24. 24.
    Landau DP, Binder K (2005) A guide to Monte Carlo simulations in statistical physics, 2nd edn. Cambridge University Press, Cambridge, MAzbMATHCrossRefGoogle Scholar
  25. 25.
    Cho J, Terry SG, LeSar R, Levi CG (2005) Mater Sci Eng A 39:390Google Scholar
  26. 26.
    Zener C (1951) Phys Rev 81:440zbMATHCrossRefADSGoogle Scholar
  27. 27.
    Bao W, Axe JD, Chen CH, Cheong S-W, Schiffer P, Roy M (1998) Physica B 241–242:418Google Scholar
  28. 28.
    Restrepo-Parra E, Restrepo J, Jurado JF, Vargas-Hernández C, Riaño-Rojas JC (2009) IEEE Trans Magn 45:5180CrossRefADSGoogle Scholar
  29. 29.
    Riaño-Rojas JC, Restrepo-Parra E, Orozco-Hernández G, Restrepo J, Jurado JF, Vargas-Hernández C (2009) IEEE Trans Magn 45:5196CrossRefADSGoogle Scholar
  30. 30.
    Lederman D, Ramírez R, Kiwi M (2004) Phys Rev B 70:184422CrossRefADSGoogle Scholar
  31. 31.
    Campillo G, Hoffmann A, Gómez ME, Prieto P (2005) Rev Col Phys 37:215Google Scholar
  32. 32.
    Riaño-Rojas JC, Restrepo-Parra E, Prieto-Ortiz FA, Olaya JJ (2006) Rev Col Fis 38:39 (in spanish)Google Scholar
  33. 33.
    Cheong S-W, Hwang HY (1999) In: Tokura Y (ed) Ferromagnetism versus charge/orbital ordering in mixed valent manganites in colossal magnetoresistance oxides. Gordon and Breach Monographs in Condensed Matter Science, LondonGoogle Scholar
  34. 34.
    Yoo Y-K, Duewer F, Yang H, Yi D, Li J-W, Xiang XD (2000) Nature 406:704CrossRefADSPubMedGoogle Scholar
  35. 35.
    Wang L, Major D, Paga P, Zhang D, Norton MG, Mcllroy DN (2006) Nanotechnology 17:S298CrossRefADSGoogle Scholar
  36. 36.
    Wagner R, Ellis W (1964) Appl Phys Lett 4:89CrossRefADSGoogle Scholar
  37. 37.
    Karabacak T, Guclu H, Yuksel M (2009) Phys Rev B 79:195418CrossRefADSGoogle Scholar
  38. 38.
    Amorsolo AV, Funkenbusch PD, Kadin AM (1999) Mater Sci Eng B57:186CrossRefGoogle Scholar
  39. 39.
    Salvadori MC, Martins DR, Cattani M (2006) Surf Coat Technol 200:5119CrossRefGoogle Scholar
  40. 40.
    Hu G, Orkoulas G, Christofides PD (2009) Chem Eng Sci 64:3903CrossRefGoogle Scholar
  41. 41.
    Palasantzas G, Zhao Y-P, De Hosson JThM, Wang G-C (2000) Physica B 283:199CrossRefADSGoogle Scholar
  42. 42.
    Palasantzas G (2005) Phys Rev B 75:205320CrossRefADSGoogle Scholar
  43. 43.
    Kirilyuk A, Rasing Th, Haast MAM, Lodder JC (1998) Appl Phys Lett 72:2331CrossRefADSGoogle Scholar
  44. 44.
    Zhang J, White RM (1996) IEEE Trans Magn 32:4630CrossRefADSGoogle Scholar
  45. 45.
    Shen JX, Kief MT (1996) J Appl Phys 79:5008CrossRefADSGoogle Scholar
  46. 46.
    Park CM, Min KI, Shin KH (1996) J Appl Phys 79:6228CrossRefADSGoogle Scholar
  47. 47.
    Soeya S, Fuyama M, Tadokoro S, Imagawa T (1996) J Appl Phys 79:1604CrossRefADSGoogle Scholar
  48. 48.
    Mauri D, Siegmann HC, Bagus PS, Kay E (1987) J Appl Phys 62:3047CrossRefADSGoogle Scholar
  49. 49.
    Neel L (1967) Ann Phys 1:61Google Scholar
  50. 50.
    Takano K, Kodama RH, Berkowitz AE, Cao W, Thomas G (1997) Phys Rev Lett 79:1130CrossRefADSGoogle Scholar
  51. 51.
    Malozemoff AP (1988) J Appl Phys 63:3874CrossRefADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • E. Restrepo-Parra
    • 1
    Email author
  • G. Orozco-Hernández
    • 1
  • J. Urrea-Serna
    • 1
  • J. F. Jurado
    • 1
  • J. C. Vargas-Hernández
    • 1
  • J. C. Riaño-Rojas
    • 2
  • J. Restrepo
    • 3
  1. 1.Departamento de Física y QuímicaUniversidad Nacional de Colombia-Sede ManizalesManizalesColombia
  2. 2.Departamento de Matemáticas y EstadísticaUniversidad Nacional de Colombia-Sede ManizalesManizalesColombia
  3. 3.Grupo de Magnetismo y Simulación G, Instituto de FísicaUniversidad de AntioquiaMedellínColombia

Personalised recommendations