Journal of Materials Science

, Volume 45, Issue 24, pp 6611–6616 | Cite as

Synthesis and photocatalytic behaviors of Cr2O3–CNT/TiO2 composite materials under visible light

  • Ming Liang Chen
  • Kwang Youn Cho
  • Won Chun Oh


Cr2O3–CNT/TiO2 composites derived from chromium acetylacetonate, multi-walled carbon nanotubes (MWCNT) and titanium n-butoxide (TNB) were prepared, and the photocatalytic activity of the Cr2O3–CNT and CNT/TiO2 composites was examined. The Cr2O3–CNT/TiO2 composites were characterized by BET surface area measurement, X-ray diffraction, transmission electron microscopy, and energy dispersive X-ray analysis. The photocatalytic activity was determined from the decomposition of methylene blue (MB) under visible light irradiation. Methylene blue was photodegraded successfully in the presence of the Cr2O3–CNT/TiO2 composite under visible light irradiation.


TiO2 Methylene Blue Photocatalytic Activity Photocatalytic Degradation Visible Light Irradiation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Fujishima A, Honda K (1972) Nature 238:37CrossRefADSPubMedGoogle Scholar
  2. 2.
    Mills A, Hunte SL (1997) J Photochem Photobiol A 108:1CrossRefGoogle Scholar
  3. 3.
    Tryk DA, Fujishima A, Honda K (2000) Electrochim Acta 45:2363CrossRefGoogle Scholar
  4. 4.
    Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Chem Rev 95:69CrossRefGoogle Scholar
  5. 5.
    Zou Z, Ye J, Sayama K, Arakawa H (2001) Nature 414:625CrossRefADSPubMedGoogle Scholar
  6. 6.
    Hagfeldt A, Gr¨atzel M (2000) Acc Chem Res 33:269CrossRefPubMedGoogle Scholar
  7. 7.
    Sivalingam G, Nagaveni K, Hegde MS, Madras G (2003) Appl Catal B 45:23CrossRefGoogle Scholar
  8. 8.
    Mohapatra P, Parida KM (2006) J Mol Catal A 258:118CrossRefGoogle Scholar
  9. 9.
    Barakat MA, Schaeffer H, Hayes G, Ismat-Shah S (2005) Appl Catal B 57:23CrossRefGoogle Scholar
  10. 10.
    Colmenares JC, Aramendia MA, Marinas A, Marinas JM, Urbano FJ (2006) Appl Catal A 306:120CrossRefGoogle Scholar
  11. 11.
    Karvinen S (2003) Solid State Sci 5:811CrossRefADSGoogle Scholar
  12. 12.
    Ji-Chuan X, Yan-Li S, Huang JE, Wang B, Hu-Lin L (2004) J Mol Catal A 219:351CrossRefGoogle Scholar
  13. 13.
    Choi W, Termin A, Hoffmann MR (1994) Angew Chem Int Ed Engl 33:1091CrossRefGoogle Scholar
  14. 14.
    Oh WC, Chen ML (2008) Bull Korean Chem Soc 29:159CrossRefGoogle Scholar
  15. 15.
    Chen ML, Oh WC (2008) Anal Sci Technol 21:229Google Scholar
  16. 16.
    Oh WC, Zhang FJ, Chen ML (2009) Bull Korean Chem Soc 30:2637CrossRefGoogle Scholar
  17. 17.
    Miyazaki H, Matsui H, Nagano T, Karuppuchamy S, Ito S, Yoshihara M (2008) Appl Surf Sci 254:7365CrossRefADSGoogle Scholar
  18. 18.
    Oh WC, Zhang FJ, Chen ML (2010) J Ind Eng Chem 16:321Google Scholar
  19. 19.
    Chen ML, Bae JS, Oh WC (2006) Anal Sci Technol 19:460Google Scholar
  20. 20.
    Ghasemi S, Rahimnejad S, Rahman Setayesh S, Hosseini M, Gholami MR (2009) Prog React Kinet Mech 34:55CrossRefGoogle Scholar
  21. 21.
    Oh WC, Zhang FJ, Chen ML (2010) J Ind Eng Chem 16:299Google Scholar
  22. 22.
    Dong YL, Won JL, Jae Sung S, Jung HK, Yang SK (2004) Comput Mater Sci 30:383CrossRefGoogle Scholar
  23. 23.
    Chen ML, Zhang FJ, Oh WC (2009) New Carbon Mater 24:159CrossRefADSGoogle Scholar
  24. 24.
    Choi W, Termin A, Hoffmann MR (1994) J Phys Chem 98:13669CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ming Liang Chen
    • 1
  • Kwang Youn Cho
    • 2
  • Won Chun Oh
    • 1
  1. 1.Department of Advanced Materials and Science EngineeringHanseo UniversitySeosan-si, Chungnam-doKorea
  2. 2.Korea Institute of Ceramic Engineering and Technology SeoulKorea

Personalised recommendations