Journal of Materials Science

, Volume 45, Issue 23, pp 6540–6555

Fracture toughness modification by using a fibre laser surface treatment of a silicon nitride engineering ceramic

Article

Abstract

Surface treatment of a silicon nitride (Si3N4) engineering ceramic with fibre laser radiation was conducted to identify changes in the fracture toughness as measured by K1c. A Vickers macro-hardness indentation method was adopted to determine the K1c of the Si3N4 before and after fibre laser surface treatment. Optical and a scanning electron microscopy (SEM), a co-ordinate measuring machine and a focus variation technique were used to observe and measure the dimensions of the Vickers indentation, the resulting crack lengths, as well as the crack geometry within the as-received and fibre laser-treated Si3N4. Thereafter, computational and analytical methods were employed to determine the K1c using various empirical equations. The equation K1c = 0.016 (E/Hv)1/2 (P/c3/2) produced most accurate results in generating K1c values within the range from 4 to 6 MPa m1/2. From this it was found that the indentation load, hardness, along with the resulting crack lengths in particular, were the most influential parameters within the K1c equation used. An increase in the near surface hardness of 4% was found with the Si3N4 in comparison with the as-received surface, which meant that the fibre laser-treated surface of the Si3N4 became harder and more brittle, indicating that the surface was more prone to cracking after the fibre laser treatment. Yet, the resulting crack lengths from the Vickers indentation tests were reduced by 37% for the Si3N4 which in turn led to increase in the K1c by 47% in comparison with the as-received surface. It is postulated that the fibre laser treatment induced a compressive stress layer by gaining an increase in the dislocation movement during elevated temperatures from the fibre laser surface processing. This inherently increased the compressive stress within the Si3N4 and minimized the crack propagation during the Vickers indentation test, which led to the fibre laser-radiated surface of the Si3N4 engineering ceramic to have more resistance to crack propagation.

List of symbols

Kc

Plane stress fracture toughness

K1c

Fracture Toughness

CO2

Carbon dioxide

CW

Continuous wave

Hv

Hardness

E

Young’s modulus

N

Newton’s

c

Average flaw size

P

Load (kg)

Pc

Load impact

Ic

Interior cracks

m min−1

Metre per minute

HIP

Hot isostatic pressed

CIP

Cold isostatic pressed

O2

Oxygen

Si3N4

Silicon nitride

ZrO2

Zirconia oxide

Al2O3

Alumina

Sic

Silicon carbide

MgO

Magnesia oxide

PSZ

Partially stabilized zirconia

SiO2

Silicon dioxide

kg

Kilo gram

MPa

Mega pascal

GPa

Giga pascal

Μm

Micro metre

M

Meters

m2

Meter cubed

mm

Millimetres

L

Litres

CMM

Co-ordinate measuring machine

δ

Delta

β

Beta

°C

Degrees centigrade

NC

Numerical control

θ

Theta

D

Average diagonal size

YSiAlON

Sailon

Nd:YAG

Neodinium Yttrium Aluminium Garnet

References

  1. 1.
    Richardson D (2006) Modern ceramic engineering, 3rd edn. CRC Press, Taylor & Francis Group, New YorkGoogle Scholar
  2. 2.
    Kawamura H (1999) Science of engineering ceramics II, International symposium, vol 161, p 9Google Scholar
  3. 3.
    Mikijelj B, Mangels J (2000) 7th international symposium of ceramic materials and components for engines, U.K.Google Scholar
  4. 4.
    Mikijelj B, Mangels J, Belfield E (2002) Institution of mechanical engineers fuel injection system conference, LondonGoogle Scholar
  5. 5.
    Mangels J (2006) Institution of mechanical engineers, fuel injection system conference, LondonGoogle Scholar
  6. 6.
    Shukla PP (2007) MSc by research thesis, Coventry University, United KingdomGoogle Scholar
  7. 7.
    Ponton CB, Rawlings RD (1989) Mater Sci Technol 5:865Google Scholar
  8. 8.
    Ponton CB, Rawlings RD (1989) Mater Sci Technol 5:961Google Scholar
  9. 9.
    McColm IJ (1990) Ceramic hardness. Platinum Press, New YorkGoogle Scholar
  10. 10.
    Mitchell TE (1985) Mater Sci Technol 1:944Google Scholar
  11. 11.
    Castaing J, Veyssiere P (1985) Core structure dislocations in ceramics, vol 12. Gordon and Breach Science Publishers Inc. and OPA Ltd. U.K, p 213Google Scholar
  12. 12.
    Castaing J (1995) Radiation effects and defects in solids, vol 137. Gordon and Breach Science Publishers Inc. and OPA Ltd., S.A., p 205Google Scholar
  13. 13.
    Shukla PP, Lawrence J (2009) Proceedings of the IMechE Part B, vol. 224 (in press)Google Scholar
  14. 14.
    Malshe A, Li S, Jiang W, McCluskey WP (2006) J Eng Mater Technol 128:460CrossRefGoogle Scholar
  15. 15.
    Li S, Malshe AP, Jiang W-p, Mccluskey PH (2006) Trans Nonferrous Mat Soc China 16:558CrossRefGoogle Scholar
  16. 16.
    Segall AE, Cai G, Akarapu R, Ramasco A (2005) J Laser Appl 17(1):57CrossRefGoogle Scholar
  17. 17.
    Samant AN, Dahotre NB (2009) Ceram Int 35:2093Google Scholar
  18. 18.
    Hao L, Lawrence J (2006) Opt Lasers Eng 44:803CrossRefGoogle Scholar
  19. 19.
    Hoe L, Lawrence J, Chian KS (2005) J Mater Sci Mater Med 16:719CrossRefGoogle Scholar
  20. 20.
    Hao L, Lawrence J (2006) Proc R Soc A 462(2065):43Google Scholar
  21. 21.
    Triantafyllidis D, Lin L, Stott FH (2002) Appl Surf Sci 186:140CrossRefADSGoogle Scholar
  22. 22.
    Lawrence J, Li L (2002) Lasers Eng 12(2):81Google Scholar
  23. 23.
    Lawrence J, Li L (2003) J Mater Process Technol 142:461CrossRefGoogle Scholar
  24. 24.
    Lawrence J, Li L (2003) J Mater Process Technol 138:551CrossRefGoogle Scholar
  25. 25.
    Wang HA, Wang WY, Xie CS, Song WL, Zeng DW (2004) Appl Surf Sci 223:244CrossRefADSGoogle Scholar
  26. 26.
    Wang HA, Wang WY, Xie CS, Song WL, Zeng DW (2003) Appl Surf Sci 221:291Google Scholar
  27. 27.
    Delmdahl R, Pätzel R (2008) Appl Phys A 93:611CrossRefADSGoogle Scholar
  28. 28.
    Shukla PP, Lawrence J, (2009) Proceeding of ICALEO 2009, Orlando, FLGoogle Scholar
  29. 29.
    Liang KM, Orange G, Fantozzi G (1990) J Mater Sci 25:207. doi:10.1007/BF00544209.29 CrossRefADSGoogle Scholar
  30. 30.
    Matsumoto RKL (1987) J Am Ceram Soc 70:366CrossRefGoogle Scholar
  31. 31.
    Chicot D (2004) Mater Sci Technol 20:877CrossRefGoogle Scholar
  32. 32.
    Liang KM, Orange G, Fantozzi G (1988) Science ceramics 14th international conference, vol 14, p 709Google Scholar
  33. 33.
    Exner HE (1989) Trans Metall Soc AIME 245(4):677Google Scholar
  34. 34.
    Marion RH (1979) In: Freiman SW (ed) In fracture mechanics applied to brittle materials. STP 678), PA, ASTM:103–111, PhiladelphiaGoogle Scholar
  35. 35.
    Evans AG (1976) Acta Metall 24:939CrossRefGoogle Scholar
  36. 36.
    Evans AG, Charles EA (1976) J Am Soc 59(7–8):371Google Scholar
  37. 37.
    Lawn BR, Evans AG, Marshall DB (1980) J Am Ceram Soc 63(9–10):574CrossRefGoogle Scholar
  38. 38.
    Marshall DB (1983) J Am Ceram Soc 66:127CrossRefGoogle Scholar
  39. 39.
    Anstis GR, Chantikul P, Lawn BR, Marshall DB (1981) J Am Ceram Soc 64:533CrossRefGoogle Scholar
  40. 40.
    Niihara K, Morena R, Hasselman DPH (1982) J Mater Sci Lit 1:13CrossRefGoogle Scholar
  41. 41.
    Tani T, Miyamoto Y, Koizumi M (1986) Ceram Int 12(P1):33CrossRefGoogle Scholar
  42. 42.
    Hoshide T (1993) Eng Fract Mech 44(3):403Google Scholar
  43. 43.
    Kelly JR, Cohen ME, Tesk JA (1993) J Am Ceram Soc 76(10):2665CrossRefGoogle Scholar
  44. 44.
    Gong J (1998) J Eur Ceram Soc 19:1585CrossRefGoogle Scholar
  45. 45.
    Orange O, Liang KM, Fantozzi G (1987) Sci Ceram 14(PT 7–9):709Google Scholar
  46. 46.
    Glandous JC, Rouxl T, Qiu T (1991) Ceram Int 17:129CrossRefGoogle Scholar
  47. 47.
    Fischer H, Waindich A, Telle R (2006) Acad Dent Mater Sci Direct 24:618Google Scholar
  48. 48.
    Gosotsi GA (1999) Strength Mater 31(1):81Google Scholar
  49. 49.
    Anstis GR, Chantikul P, Lawn BR, Marshall DB (1980) J Am Ceram Soc 64:533CrossRefGoogle Scholar
  50. 50.
    Lawn BR, Swain MV (1975) J Mater Sci 10:113. doi:10.1007/BF00541038.35 CrossRefADSGoogle Scholar
  51. 51.
    British Standards (2005) Vickers hardness test-Part 2—verification and calibration of testing machines. Metallic Materials-ISO 6507-1Google Scholar
  52. 52.
    Li Z, Gosh A, Kobayashi AS, Bradt RC (1989) J Am Ceram Soc 72:904CrossRefGoogle Scholar
  53. 53.
    Lawn BR, Wilshaw TR (1975) J Mater Sci 10:1049. doi:10.1007/BF00823224.26 CrossRefADSGoogle Scholar
  54. 54.
    Lawn BR, Fuller ER (1975) J Mater Sci 10:2016. doi:10.1007/BF0057479 CrossRefADSGoogle Scholar
  55. 55.
    Lankford J (1982) J Mater Sci Lett 1:493CrossRefGoogle Scholar
  56. 56.
    Laugier MT (1985) J Mater Sci Lett 4:1539CrossRefGoogle Scholar
  57. 57.
    Tanaka K (1987) J Mater Sci 22:1501. doi:10.1007/BF01233154 CrossRefADSGoogle Scholar
  58. 58.
    Miranzo P, Moya JS (1984) Ceram Int 10(4):147CrossRefGoogle Scholar
  59. 59.
    Tensky International Co. Ltd. (2009) Tensky International technical specification. www.tensky.com.tw
  60. 60.
    Granta Design Ltd. CES selector, version 5.1. Cambridge, UK, 2008. www.granta.co.uk
  61. 61.
    Jiang JZ, Kragh F, Frost DJ, Stahl K, Lindelov H (2001) J Phys Condens Matter 13(22):L515Google Scholar
  62. 62.
    Shukla PP, Lawrence J (2009) Proceedings of ICALEO-09, FL, USAGoogle Scholar
  63. 63.
    Moon W, Ito T, Uchimura S, Saka H (2004) Mater Sci Eng A 387–389:837Google Scholar
  64. 64.
    Pfeiffer, Frey W (2002) Shaping the future—damage or benefits. Fraunhofer Institute for Mechanics of Materials ICSP-8, GermanyGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Loughborough University, Wolfson School of Mechanical and Manufacturing EngineeringLeicestershireUnited Kingdom

Personalised recommendations