Journal of Materials Science

, Volume 45, Issue 23, pp 6455–6460 | Cite as

Influence of the shapes on the magnetic and electrical transport properties of La2/3Ca1/3MnO3 nanoparticles

  • J. C. Riaño-Rojas
  • E. Restrepo-ParraEmail author
  • G. Orozco-Hernández
  • J. A. Urrea-Serna
  • J. Restrepo


In this work, the role of the geometrical shape, using the Minkowski’s metrics, upon the temperature dependence of the magnetic and electrical transport properties of La2/3Ca1/3MnO3 nanoparticles was carried out. We considered a set of small particles with different shapes containing approximately the same amount of Mn ions (~6500) and distributed as a simple cubic structure in agreement with the manganites perovskite structure. The model is based on the standard Monte Carlo–Metropolis method and the classical Heisenberg Hamiltonian involving nearest magnetic neighbors interactions. Results dealing with the dependence of the Curie temperature for nanoparticles is lower than material in bulk. Moreover, magnetization and magnetic susceptibility as a function of the metric for some field cooled values. As the field cooled increased the transition temperature T C increased. On the other hand, low temperature coercive force and resistivity with the shape of the nanoparticles, having different metric parameters, are present and discussed.


Manganite Coercive Force Magnetization Reversal Magnetocrystalline Anisotropy Surface Anisotropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial support of Dirección Nacional de Investigaciones of Universidad Nacional during the course of this research, under project 7785. This work was also supported in part by the GES and GICM Sustainability projects, the IN565CE, IN576CE, and IN578CE projects of the Antioquia University. One of the authors (J.R) wants also to acknowledge to the Spanish Education Ministry for the sabbatical year Grant SB2009-0210.


  1. 1.
    Bader SD (2006) Rev Mod Phys 78:1CrossRefADSGoogle Scholar
  2. 2.
    Zhu J-G (2003) Mater Today 6:22CrossRefGoogle Scholar
  3. 3.
    Zhu J-G, Park C (2006) Mater Today 9:36CrossRefGoogle Scholar
  4. 4.
    White RL, Newt RMH, Pease RFW (1997) IEEE Trans Magn 33:990CrossRefADSGoogle Scholar
  5. 5.
    Vavassori P, Donzelli O, Callegaro L, Grimsditch M, Metlushko V (2000) IEEE Trans Magn 36:2993CrossRefADSGoogle Scholar
  6. 6.
    Vavassori P, Zaluzec N, Metlushko V, Novosad V, Ilic B, Grimsditch M (2004) Phys Rev B 69:214404CrossRefADSGoogle Scholar
  7. 7.
    Cowburn RP, Koltsov DK, Adeyeye AO, Welland ME (1999) Europhys Lett 48(2):221CrossRefADSGoogle Scholar
  8. 8.
    Hehn M, Ounadjela K, Bucher JP, Rousseaux F, Decanini D, Bartenlian B, Chappert C (1996) Science 272:1782CrossRefADSPubMedGoogle Scholar
  9. 9.
    Shi J, Tehrani S, Scheinfein MR (2000) Appl Phys Lett 76:2588CrossRefADSGoogle Scholar
  10. 10.
    Goll D, Schütz G, Kronmüller H (2003) Phys Rev B 67:094414CrossRefADSGoogle Scholar
  11. 11.
    Koltsov DK, Welland ME (2003) J Appl Phys 94(5):3457CrossRefADSGoogle Scholar
  12. 12.
    Shinjo T, Okuno T, Hassdorf R, Shigeto K, Ono T (2000) Science 289:930CrossRefADSPubMedGoogle Scholar
  13. 13.
    Natali M, Prejbeanu IL, Lebib A, Buda LD, Ounadjela K, Chen Y (2002) Phys Rev Lett 88:1CrossRefGoogle Scholar
  14. 14.
    Zhu FQ, Chern GW, Tchernyshyov O, Zhu XC, Zhu JG, Chien CL (2006) Phys Rev Lett 96:027205CrossRefADSPubMedGoogle Scholar
  15. 15.
    Goolaup S, Adeyeye AO, Singh N (2006) Phys Rev B 73:104444CrossRefADSGoogle Scholar
  16. 16.
    Rostamnejadi Ali, Salamati Hadi, Kameli Parviz, Ahmadvand Hossein (2009) J Magn Magn Mater 321:3126CrossRefADSGoogle Scholar
  17. 17.
    Roy S, Dubenko I, Edorh DD, Ali N (2004) J Appl Phys 96:1202CrossRefADSGoogle Scholar
  18. 18.
    Dey P, Nath TK (2006) Appl Phys Lett 89:163102CrossRefADSGoogle Scholar
  19. 19.
    Riaño-Rojas JC, Restrepo-Parra E, Orozco-Hernández G, Restrepo J, Jurado JF, Vargas-Hernández C (2009) IEEE Trans Magn 45:5196CrossRefADSGoogle Scholar
  20. 20.
    Cheong S-W, Hwang HY (1999) In: Tokura Y (ed) Colossal magnetoresistance oxides, Monographs in condensed matter science. Gordon and Breach, LondonGoogle Scholar
  21. 21.
    Miller RI, Arseneau D, Chow KH, Daviel S, Engelbertz A, Hossain MD, Keeler T, Kiefl RF, Kreitzman S, Levy CDP, Morales P, Morris GD, MacFarlane WA, Parolin TJ, Poutissou R, Saadaoui H, Salman Z, Wang D, Wei JYT (2006) Phys B Condens Matter 374–375:30CrossRefGoogle Scholar
  22. 22.
    Hotta T, Feiguin A, Dagotto E (2001) Phys Rev Lett 86:4922CrossRefADSPubMedGoogle Scholar
  23. 23.
    Mazo-Zuluaga J, Restrepo J, Mejía-López J (2007) Phys B Condens Matter 398:187CrossRefADSGoogle Scholar
  24. 24.
    Christides C, Moutis N, Komninou Ph, Kehagias Th, Nouet G (2002) J Appl Phys 92:397CrossRefADSGoogle Scholar
  25. 25.
    Kodama RH, Berkowitz AE (1999) Phys Rev B 59:6321CrossRefADSGoogle Scholar
  26. 26.
    Otero-Leal M, Pardiñas I, Rivadulla F, Lopez-Quintela MA, Rivas J (2006) Boletin de la Sociedad española de Cerámica y Vidrio 45:175Google Scholar
  27. 27.
    Okamoto S, Ichihara S, Maekawa S (2002) Phys Rev B 65:144403CrossRefADSGoogle Scholar
  28. 28.
    Kreyszig E (1989) Introductory functional analysis with applications. Wiley, USA, p 11zbMATHGoogle Scholar
  29. 29.
    Vandewalle N, Ausloos M, Cloots R (1999) Phys Rev B 59:11909CrossRefADSGoogle Scholar
  30. 30.
    Fonseca FC, Goya GF, Jardim RF, Muccillo R, Carreño NLV, Longo E, Leite ER (2002) Phys Rev B 66:104406CrossRefADSGoogle Scholar
  31. 31.
    Bogner J, Reisnner M, Steiner W (1999) J Magn Magn Mater 196–197:641CrossRefGoogle Scholar
  32. 32.
    Stoner EC, Wohlfarth EP (1948) Philos Trans R Soc Lond A 240(826):599zbMATHCrossRefADSGoogle Scholar
  33. 33.
    Tannous C, Gieraltowski J (2008) Eur J Phys 29:475CrossRefGoogle Scholar
  34. 34.
    Mazo-Zuluaga J, Restrepo J, Mejía-López J (2008) J Appl Phys 103:113906CrossRefADSGoogle Scholar
  35. 35.
    Bastiaansen PJM, Knops HJF (1998) J Phys Chem Solids 59:297CrossRefADSGoogle Scholar
  36. 36.
    Cheong S-W, Hwang HY (1999) In: Tokura Y (ed) Colossal magnetoresistance oxides, Monographs in condensed matter science, Gordon & Breach, LondonGoogle Scholar
  37. 37.
    Dagotto E, Hotta T, Moreo A (2001) Phys Rep 344:1CrossRefADSGoogle Scholar
  38. 38.
    Markovica D, Kusigerskia V, Tadica M, Blanusaa J, Jaglicic Z, Cvjeticaninc N, Spasojevic V (2010) J Alloys Compd 494:52CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • J. C. Riaño-Rojas
    • 1
  • E. Restrepo-Parra
    • 2
    Email author
  • G. Orozco-Hernández
    • 2
  • J. A. Urrea-Serna
    • 2
  • J. Restrepo
    • 3
  1. 1.Departamento de Matemáticas y EstadísticaUniversidad Nacional de ColombiaManizalesColombia
  2. 2.Departamento de Física y QuímicaUniversidad Nacional de ColombiaManizalesColombia
  3. 3.Grupo de Magnetismo y Simulación G+, Instituto de FísicaUniversidad de AntioquiaMedellínColombia

Personalised recommendations