Journal of Materials Science

, Volume 45, Issue 22, pp 6159–6165 | Cite as

Effect of acetic acid content on in situ preparation of epoxy/zirconia hybrid materials

Article

Abstract

Epoxy/zirconia hybrid materials were synthesized via in situ polymerization of acetic acid-modified zirconium alkoxide. The reactivity of acetic acid-modified zirconium alkoxide changed with the amount of acetic acid added. In the hybrid materials, the phase structure varied between the homogeneous phase and nanophase separation as the reactivity of zirconium alkoxide changed. At the molecular level, the storage modulus in the rubbery region significantly increased and the peak area of tan δ in the glass-transition temperature region decreased with increasing zirconia contents in the hybrid dispersed zirconia. Additionally, the optical properties of the hybrid materials in the homogeneous phase were better than those in the system with nanophase separation.

References

  1. 1.
    Zhang J, Wang BJ, Ju X, Hu TD (2001) Polymer 4442:3697CrossRefGoogle Scholar
  2. 2.
    Nakane K, Kurita T, Ogihara T, Ogata N (2004) Compos B Eng 35:219CrossRefGoogle Scholar
  3. 3.
    Yu D, Godovski (1995) Adv Polym Sci 119:79CrossRefGoogle Scholar
  4. 4.
    Beecroft LL, Ober CK (1997) Chem Mater 9:1302CrossRefGoogle Scholar
  5. 5.
    Ochi M, Takahashi R, Terauchi A (2001) Polymer 42:5151CrossRefGoogle Scholar
  6. 6.
    Ochi M, Takahashi R (2001) J Polym Sci B Polym Phys Ed 39:1071CrossRefADSGoogle Scholar
  7. 7.
    Guan C, Lü C, Liu Y, Yang B (2006) J Appl Polym Sci 102:1631CrossRefGoogle Scholar
  8. 8.
    Ching C, Chen W (2001) J Polym Sci A Polym Chem 39:3419CrossRefADSGoogle Scholar
  9. 9.
    Chen W, Liu W, Wu P, Chen P (2004) Mater Chem Phys 83:71CrossRefGoogle Scholar
  10. 10.
    Xiong M, Zhou S, You B, Wu L (2005) J Polym Sci B Polym Phys Ed 43:637CrossRefADSGoogle Scholar
  11. 11.
    Lee L, Chen W (2001) Chem Mater 13:1137CrossRefGoogle Scholar
  12. 12.
    Luo K, Zhou S (2009) Thin Solid Film 517:5974CrossRefADSGoogle Scholar
  13. 13.
    Jung KY, Park SB (2004) Mater Lett 58:2897CrossRefGoogle Scholar
  14. 14.
    Que W, Zhou Y, Lam YL, Chan YC, Kam CH (2000) Thin Solid Films 358:16CrossRefADSGoogle Scholar
  15. 15.
    Zhang J, Luo S, Gui L (1997) J Mater Sci 32:1469. doi:10.1023/A:1018553901058 CrossRefGoogle Scholar
  16. 16.
    Nakade M, Kameyama K (2004) J Mater Sci 39:4131. doi:10.1023/B:JMSC.0000033393.11687.cf CrossRefADSGoogle Scholar
  17. 17.
    Ochi M, Nii D, Suzuki Y, Harada M (2010) J Mater Sci 45:2655. doi:10.1007/s10853-010-4244-7 CrossRefADSGoogle Scholar
  18. 18.
    Nakamoto K (1963) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, New YorkGoogle Scholar
  19. 19.
    Hayashi H, Suzuki H, Kaneko S (1998) J Sol-Gel Sci Technol 12:87CrossRefGoogle Scholar
  20. 20.
    Ochi M, Okazaki M, Shimbo M (1982) J Polym Sci B Polym Phys Ed 20:689ADSGoogle Scholar
  21. 21.
    Kukil B, Ritala M, Leskelä M (2000) Chem Vap Deposition 6:297CrossRefGoogle Scholar
  22. 22.
    Yamada N, Yoshinaga I, Katayama S (2000) J Sol-Gel Sci Technol 17:123CrossRefGoogle Scholar
  23. 23.
    Mendez-Vivar J, Brinker CJ (1994) J Sol-Gel Sci Technol 2:393CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Faculty of Chemistry, Materials and BioengineeringKansai UniversityOsakaJapan

Personalised recommendations