Journal of Materials Science

, Volume 45, Issue 22, pp 6038–6045 | Cite as

In vitro degradation and cell attachment of a PLGA coated biodegradable Mg–6Zn based alloy

  • J. N. Li
  • P. CaoEmail author
  • X. N. ZhangEmail author
  • S. X. Zhang
  • Y. H. He


Currently available engineering magnesium alloys have several critical concerns if they are about to be used as biomaterials, particularly the concern about the toxicity of the common alloying elements such as aluminum and rare earth (RE). There is an increasing demand to develop new magnesium alloys that do not contain any toxic elements. It is also desirable, yet challenging, to develop such a material that has a controllable degradation rate in the human fluid environment. This paper presents mechanical properties, degradation, and in vitro cell attachment of a newly developed Mg–6Zn magnesium alloy. The alloy demonstrated comparable mechanical properties with typical engineering magnesium alloys. However, the bare alloy did not show an acceptable corrosion (degradation) rate. Application of a polymeric PLGA or poly(lactide-co-glycolide) coating significantly decreased the degradation rate. The results obtained from cell attachment experiments indicated that the mouse osteoblast-like MC3T3 cells could develop enhanced confluence on and interactions with the coated samples.


Magnesium Alloy Electrochemical Impedance Spectroscopy Coated Sample Immersion Test Potentiodynamic Polarization Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (No. 30772182 and No. 30901422), the Shanghai Jiao Tong University Interdiscipline Research Grant (No. YG2009MS53) and the “863” High-tech Programs of China (No. 2009AA03Z424). The useful and constructive comments from the reviewers are acknowledged. PC would also like to acknowledge the financial support from the Foundation of Research Science and Technology (FRST), New Zealand.


  1. 1.
    Williams D (2006) Med Device Technol 17:9PubMedGoogle Scholar
  2. 2.
    Mani G, Feldman MD, Patel D, Agrawal CM (2007) Biomaterials 28:1689CrossRefPubMedGoogle Scholar
  3. 3.
    Peuster M et al (2006) Biomaterials 27:4955CrossRefPubMedGoogle Scholar
  4. 4.
    Mueller PP, May T, Perz A, Hauser H, Peuster M (2006) Biomaterials 27:2193CrossRefPubMedGoogle Scholar
  5. 5.
    Heublein B, Rohde R, Kaese V, Niemeyer M, Hartung W, Haverich A (2003) Heart 89:651CrossRefPubMedGoogle Scholar
  6. 6.
    Song G, Song S (2007) Adv Eng Mater 9:298CrossRefGoogle Scholar
  7. 7.
    Witte F, Fischer J, Nellesen J, Crostack H, Kaese V, Pischd A (2006) Biomaterials 27:1013CrossRefPubMedGoogle Scholar
  8. 8.
    Witte F, Kaese V, Switzer H, Meyer-Lindenberg A, Wirth CJ, Windhag H (2005) Biomaterials 26:3557CrossRefPubMedGoogle Scholar
  9. 9.
    Peuster M, Fink C, Schnakenburg CV (2003) Biomaterials 24:4057CrossRefPubMedGoogle Scholar
  10. 10.
    Zreiqat H, Valenzuela SM, Nissan BB, Roest R, Knabe C, Radlanski RJ, Renz H, Evans PJ (2005) Biomaterials 26:7579CrossRefPubMedGoogle Scholar
  11. 11.
    Saris NL, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A (2000) Clin Chim Acta 294:1CrossRefPubMedGoogle Scholar
  12. 12.
    Staiger MP, Pietak AM, Huadmai J, Dias G (2006) Biomaterials 27:1728CrossRefPubMedGoogle Scholar
  13. 13.
    Zeng R, Dietzel W, Witte F, Hort N, Blawert C (2008) Adv Eng Mater 10:B3CrossRefGoogle Scholar
  14. 14.
    Erbel R, Di Mario C, Bartunek J, Bonnier J, de Bruyne B, Eberli FR, Erne P, Haude M, Heublein B, Horrigan M, Llsley C, Bose D, Koolen J, Luscher TF, Weissman N, Waksman R (2007) Lancet 369:1869 Google Scholar
  15. 15.
    Hotz K, Murphy A (2006) Drug-eluting and absorbable stents push interventional frontiers. The American College of Cardiology. Accessed 10 June 2010
  16. 16.
    Song G (2007) Corros Sci 49:1696CrossRefGoogle Scholar
  17. 17.
    El-Rahman SSA (2003) Pharmacol Res 47:189CrossRefPubMedGoogle Scholar
  18. 18.
    Ku C-H, Pioletti DP, Browne M, Gregson PJ (2002) Biomaterials 23(6):1447CrossRefPubMedGoogle Scholar
  19. 19.
    Yumiko N, Yukari T, Yasuhide T, Tadashi S, Yoshio I (1997) Fundam Appl Toxicol 37:106CrossRefGoogle Scholar
  20. 20.
    Gu X, Zheng Y, Cheng Y, Zhong S, Xi T (2009) Biomaterials 30:484CrossRefPubMedGoogle Scholar
  21. 21.
    Yuen CK, Ip WY (2010) Acta Biomater 6:1808CrossRefPubMedGoogle Scholar
  22. 22.
    Zberg B, Uggowitzer PJ, Loffler JF (2009) Nat Mater 8:887CrossRefADSPubMedGoogle Scholar
  23. 23.
    Göpferich A (1996) Biomaterials 17:103CrossRefPubMedGoogle Scholar
  24. 24.
    Athanasiou KA, Niederauer GG, Agrawal CM (1996) Biomaterials 17:93CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang S, Zhang X, Zhao C, Li J, Song Y, Xie C, Tao H, Zhang Y, He Y, Jiang Y, Bian Y (2010) Acta Biomater 6:626CrossRefPubMedGoogle Scholar
  26. 26.
    Li Z, Gu X, Lou S, Zheng Y (2008) Biomaterials 29:1329CrossRefPubMedGoogle Scholar
  27. 27.
    Zhang E, Yin D, Xu L, Yang L, Yang K (2009) Mater Sci Eng C 29:987CrossRefGoogle Scholar
  28. 28.
    Song G, Atrens A, Stjohn D, Nairn J, Li Y (1997) Corros Sci 39(5):855CrossRefGoogle Scholar
  29. 29.
    Hara N, Kobayashi Y, Kagaya D, Akao N (2007) Corros Sci 49:166CrossRefGoogle Scholar
  30. 30.
    Song G, Atrens A, Wu X, Zhang B (1998) Corros Sci 40:1769CrossRefGoogle Scholar
  31. 31.
    Bonora PL, Deflorian F, Fedrizzi L (1996) Electrochim Acta 41:1073CrossRefGoogle Scholar
  32. 32.
    Yfantis A, Paloumpa I, Schmeiber D, Yfantis DY (2002) Surf Coat Technol 151–152:400CrossRefGoogle Scholar
  33. 33.
    Hanzi AC, Gunde P, Schinhammer M, Uggowitzer PJ (2009) Acta Biomater 5:162CrossRefPubMedGoogle Scholar
  34. 34.
    Cai K, Rechtenbach A, Hao J, Bossert J, Jandt KD (2005) Biomaterials 26:5960CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringShanghai Jiao Tong UniversityShanghaiPeople’s Republic of China
  2. 2.Department of Chemical and Materials Engineeringthe University of AucklandAucklandNew Zealand
  3. 3.Institute of Powder MetallurgyCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations