Journal of Materials Science

, Volume 45, Issue 21, pp 5802–5813 | Cite as

Experimental mechanical characterization of plastic-bonded explosives

  • Viet Dung Le
  • Michel Gratton
  • Michaël Caliez
  • Arnaud Frachon
  • Didier Picart
Article

Abstract

This article deals with the characterization of the static mechanical behavior of an energetic material. Due to its constituents (crystals and a polymeric binder), the behavior is complicated to model. A specific experimental protocol has been proposed in this article. It involves uniaxial tensile and compressive tests, compression under confinement and dynamic mechanical analysis. A constitutive law has been developed. The behavior is described using a Maxwell’s model, in which all the components are influenced by an isotropic damage. The first component takes into account an elasto-plastic behavior. The yield stress evolution is described using a parabolic criterion and an isotropic hardening law. The plastic flow rule is non-associated. A linear visco-elastic behavior is used for the other components. Numerical simulations show that experimental data are quite well reproduced. The last part of the article is devoted to a discussion highlighting the future improvements.

Notes

Acknowledgments

The authors would like to thank J. L. Brigolle for the contribution to this study, especially for the realization of the experiments, and to H. Trumel and P. Lambert for Fig. 1.

References

  1. 1.
    Belmas R, Reynaud J, Sorel J (2004) Propellants Explos Pyrotech 7:8CrossRefGoogle Scholar
  2. 2.
    Wiegand DA (1998) In: Proceedings of the 11th international symposium detonation, Snowmass, USA, pp 744–750, ONR 333000-5Google Scholar
  3. 3.
    Wiegand DA (1999) In: APS topical conference on shock compression condensed matter. 2000 AIP conference proceedings, Snowbird, USA, pp 675–678Google Scholar
  4. 4.
    Wiegand DA, Reddingius B (2003) In: APS topical conference on shock compression condensed matter. 2004 AIP conference proceedings, Portland, USA, pp 812–815Google Scholar
  5. 5.
    Funk DJ, Laabs GW, Peterson PD, Asay BW (1995) In: APS topical conference on shock compressed condensed matter. 1996 AIP conference proceedings, Seattle, USA, pp 145–148Google Scholar
  6. 6.
    Gray III GT, Blumenthal WR, Idar DJ, Cady CM (1997) In: APS topical conference on shock compression condensed matter. 1998 AIP conference proceedings, Amherts, USA, pp 583–586Google Scholar
  7. 7.
    Gray III GT, Idar DJ, Blumenthal WR, Cady CM, Peterson PD (1998) In: Proceedings of the 11th international symposium detonation, Snowmass, USA, pp 76–84, ONR 333000-5Google Scholar
  8. 8.
    Idar DJ, Thompson DG, Gray III GT, Blumenthal WR, Cady CM, Peterson PD, Roemer EL, Wright WJ, Jacquez BL (2001) In: APS topical conference on shock compression condensed matter. 2002 AIP conference proceedings, Atlanta, USA, pp 821–824Google Scholar
  9. 9.
    Liu C (2002) In: APS topical conference on shock compression condensed matter. 2003 AIP conference proceedings, Portland, USA, pp 786–791Google Scholar
  10. 10.
    Bennett JG, Haberman KS, Johnson JN, Asay BW, Henson BF (1998) J Mech Phys Solids 46:2303CrossRefADSGoogle Scholar
  11. 11.
    Dienes JK (1996) In: Lee D et al (eds) High pressure shock compression of solids II. Springer, New YorkGoogle Scholar
  12. 12.
    Dienes JK, Kershner JD (1998) In: Proceedings of the 11th international symposium detonation, Snowmass, USA, pp 717–724, ONR 333000-5Google Scholar
  13. 13.
    Asay BW, Dickson PM, Henson B, Fugard CS, Funk DJ, Idar DJ (1998) In: Proceedings of the 11th international symposium detonation, Snowmass, USA, pp 781–787, ONR 333000-5Google Scholar
  14. 14.
    Clancy SP, Johnson JN, Burkett MW (1998) In: Proceedings of the 11th international symposium detonation, Snowmass, USA, pp 3–11, ONR 333000-5Google Scholar
  15. 15.
    Scammon RJ, Browning RV, Middleditch J, Dienes JK, Haberman KS, Bennett JG (1998) In: Proceedings of the 11th international symposium detonation, Snowmass, USA, pp 111–118, ONR 333000-5Google Scholar
  16. 16.
    Hackett RM, Bennett JG (2000) Int J Numer Math Eng 49:1191CrossRefGoogle Scholar
  17. 17.
    Dienes JK, Zuo QH, Kershner JD (2006) J Mech Phys Solids 54:1237CrossRefADSGoogle Scholar
  18. 18.
    Rja Fi Allah S (2006) PhD thesis, Université François Rabelais de Tours (in French)Google Scholar
  19. 19.
    Williamson DM (2006) PhD thesis, Magdalene College, CambridgeGoogle Scholar
  20. 20.
    Nova R (1982) In: Proceedings of the international workshop on constitutive behavior of soils, Villard de Lans, France, pp 289–309, published in 1984Google Scholar
  21. 21.
    Dragon A, Halm D, Désoyer T (2000) Comput Methods Appl Mech Eng 183:331CrossRefGoogle Scholar
  22. 22.
    Halm D, Dragon A (1998) Eur J Mech A 17:439CrossRefMathSciNetGoogle Scholar
  23. 23.
    Mazars J (1981) In: Proceedings of the international conference of fracture, Cannes, France, pp 1499–1506Google Scholar
  24. 24.
    Mazars J (1984) PhD thesis, Université Pierre et Marie Curie–Paris 6 (in French)Google Scholar
  25. 25.
    Mazars J (1986) Eng Fract Mech 25:729CrossRefGoogle Scholar
  26. 26.
    Mazars J, Ragueneau F, Pijaudier-Cabot G (2002) In: Allix O, Hild F (eds) Continuum damage mechanics of materials and structures. Elsevier Science Ltd, OxfordGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Viet Dung Le
    • 1
  • Michel Gratton
    • 1
  • Michaël Caliez
    • 1
  • Arnaud Frachon
    • 1
  • Didier Picart
    • 2
  1. 1.ENI Val de Loire, Laboratoire de Mécanique et RhéologieUniversité F. Rabelais-ToursBlois CedexFrance
  2. 2.CEA, DAM, Le RipaultMontsFrance

Personalised recommendations