Journal of Materials Science

, Volume 45, Issue 21, pp 5786–5794 | Cite as

ZnO nanoparticles supported on mesoporous MCM-41 and SBA-15: a comparative physicochemical and photocatalytic study

  • G. D. Mihai
  • V. Meynen
  • M. Mertens
  • N. Bilba
  • P. Cool
  • E. F. Vansant
Article

Abstract

A simple solvothermal impregnation method was used to prepare ZnO nanoparticles supported on MCM-41 and SBA-15. X-ray powder diffraction, N2 adsorption–desorption, Electron Probe Micro Analysis (EPMA), and UV–vis spectroscopy were used to characterize the prepared materials. The influence of the ZnO loading of different supports on the structural characteristics and the photocatalytic activity toward degradation of methylene blue in water under ultraviolet irradiation were investigated. Wide angle X-ray diffraction and UV–vis Diffuse Reflectance confirmed the existence of ZnO phase. A much smaller influence of impregnation with ethanolic zinc salt solution on the porosity was observed for SBA-15 compared with MCM-41. Finally, the adsorption and photocatalytic activity of the ZnO/mesoporous materials depend on porous characteristics of the support materials.

Keywords

Methylene Blue Photocatalytic Activity Desorption Equilibrium Capillary Condensation Step Pore Blocking Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This study is part of the NoE project “Inside Pores” and the GOA project funded by the Special Fund for Research of the University of Antwerp. V. Meynen acknowledges the financial support received from FWO-Flanders (Fund for Scientific Research).

References

  1. 1.
    Driessen MD, Miller TM, Grassian VH (1998) J Mol Catal A Chem 131:149CrossRefGoogle Scholar
  2. 2.
    Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T (2005) Prog Mater Sci 580:293CrossRefGoogle Scholar
  3. 3.
    Zhang Q, Xie C, Zhang S, Wang A, Zhu B, Wang L, Yang Z (2005) Sens Actuators B 110:370CrossRefGoogle Scholar
  4. 4.
    Huang WJ, Fang GC, Wang CC (2005) Colloid Surf A Physicochem Eng Aspects 260:45CrossRefGoogle Scholar
  5. 5.
    Amapoorani R, Dhangeyan MR, Renganathan RJ (1997) Photochem Photobiol A Chem 111:215CrossRefGoogle Scholar
  6. 6.
    Ullah R, Dutta J (2008) J Hazard Mater 156:194CrossRefPubMedGoogle Scholar
  7. 7.
    Carlos AK, Wypych GF, Moraes SG, Duran N, Nagata N, Peralta PZ (2000) Chemosphere 40:433CrossRefGoogle Scholar
  8. 8.
    Byrappa K, Dayananda AS, Sajan CP, Basavalingu B, Shayan MB, Soga K, Yoshimura M (2008) J Mater Sci 43:2348. doi: 10.1007/s10853-007-1989-8 CrossRefADSGoogle Scholar
  9. 9.
    Matsubara K, Fons P, Iwata K, Yamada A, Sakurai K, Tampo H, Niki S (2003) Thin Solid Films 431:369CrossRefADSGoogle Scholar
  10. 10.
    Zhang J, Yu W, Zhang L (2002) Phys Lett A 299:276CrossRefADSGoogle Scholar
  11. 11.
    Sanches L, Peral J, Domenech X (1996) Electrochim Acta 41:1981CrossRefGoogle Scholar
  12. 12.
    Jin XH, Gao L (2001) J Inorg Mater 16:200Google Scholar
  13. 13.
    Rossetti R, Hull R, Gibson JM, Brus LE (1985) J Chem Phys 83:1406CrossRefADSGoogle Scholar
  14. 14.
    Ekimov AI, AlL Efros, Onushcenko AA (1985) Solid State Commun 56:921CrossRefADSGoogle Scholar
  15. 15.
    Abdullah M, Morimoto T, Okuyama K (2003) Adv Funct Mater 13:800CrossRefGoogle Scholar
  16. 16.
    Ji LW, Shih WS, Fang TH, Wu CZ, Peng SM, Meen TH (2010) J Mater Sci 45:3266. doi: 10.1007/s10853-010-4336-4 CrossRefADSGoogle Scholar
  17. 17.
    Chen J, Feng Z, Ying P, Li C (2004) J Phys Chem B 108:12669CrossRefGoogle Scholar
  18. 18.
    Bovy C, Marine W, Sporken R, Su BL (2007) Colloids Surf A 300:145CrossRefGoogle Scholar
  19. 19.
    Lu QS, Wang ZY, Li JG, Wang P, Ye X (2009) Nanoscale Res Lett 4:646CrossRefADSPubMedGoogle Scholar
  20. 20.
    Jiang Q, Wu ZY, Wang YM, Cao Y, Zhou CF, Zhu JH (2006) J Mater Chem 16:1536CrossRefGoogle Scholar
  21. 21.
    Topka P, Balcar H, Rathouskỳ J, Žilková N, Verpoort F, Čejka (2006) J Microporous Mesoporous Mater 96:44CrossRefGoogle Scholar
  22. 22.
    Chakrabarti S, Dutta BK (2004) J Hazard Mater B 112:269CrossRefGoogle Scholar
  23. 23.
    Matsumoto K, Konemura K, Shimaoka G (1988) J Cryst Growth 71:99CrossRefGoogle Scholar
  24. 24.
    Matsumoto K, Shimaoka G (1985) J Cryst Growth 86:410CrossRefGoogle Scholar
  25. 25.
    Li YJ, Duan R, Shi PB, Qin GG (2004) J Cryst Growth 260:309CrossRefADSGoogle Scholar
  26. 26.
    Huang M, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Adv Mater 13:113CrossRefGoogle Scholar
  27. 27.
    Cheng HM, Hsu HC, Chen SL, Wu WT, Kao CC, Lin LJ, Hsieh WF (2005) J Cryst Growth 277:192CrossRefADSGoogle Scholar
  28. 28.
    Dai WL, Cao Y, Ren LP, Yang XL, Xu JH, Li HX, He HY, Fan KN (2004) J Catal 229:80CrossRefGoogle Scholar
  29. 29.
    Zhang W, Shi J, Wang L, Yan D (2000) Chem Mater 12:1408CrossRefGoogle Scholar
  30. 30.
    Schröder F, Hermes S, Parala H, Hikov T, Muhler M, Fischer RA (2006) J Mater Chem 16:3565CrossRefGoogle Scholar
  31. 31.
    Burova LI, Petukhov DI, Eliseev AA, Lukashin AV, Tretyakov YD (2006) Superlattices Microstruct 39:257CrossRefADSGoogle Scholar
  32. 32.
    Zeng W, Wang Z, Qian XF, Yin J, Zhu ZK (2006) Mater Res Bull 41:1155CrossRefGoogle Scholar
  33. 33.
    Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Nature 359:710CrossRefADSGoogle Scholar
  34. 34.
    Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Science 279:548CrossRefADSPubMedGoogle Scholar
  35. 35.
    Xiong Y, Zhang LZ, Tang GQ, Zhang GL, Chen WJ (2004) J Lumin 110:17CrossRefGoogle Scholar
  36. 36.
    Busuioc AM, Meynen V, Beyers E, Mertens M, Cool P, Bilba N, Vansant EF (2006) Appl Catal A 312:153CrossRefGoogle Scholar
  37. 37.
    Barret E, Joyner L, Halenda P (1951) J Am Chem Soc 73:373CrossRefGoogle Scholar
  38. 38.
    Sauer J, Marlow F, Schüth F (2001) Phys Chem Chem Phys 3:5579CrossRefGoogle Scholar
  39. 39.
    Wu PY, Ji SF, Hu LH, Zhu JQ, Li CY (2008) J Porous Mater 15:181CrossRefGoogle Scholar
  40. 40.
    Lu W, Lu G, Luo Y, Chen A (2002) J Mol Catal A Chem 188:225CrossRefGoogle Scholar
  41. 41.
    Bahnemann DW, Kormann C, Hoffmann MR (1987) J Phys Chem 91:3789CrossRefGoogle Scholar
  42. 42.
    Ramakrishna G, Ghosh HN (2003) Langmuir 19:3006CrossRefGoogle Scholar
  43. 43.
    Wong E, Searson P (1999) Appl Phys Lett 74:2939CrossRefADSGoogle Scholar
  44. 44.
    Bickley RI, Stone FS (1973) J Catal 31:389CrossRefGoogle Scholar
  45. 45.
    Yang HF, Lu QY, Gao F, Shi QH, Yan Y, Zhang FQ, Xie SH, Tu B, Zhao DY (2005) Adv Funct Mater 15:1377CrossRefGoogle Scholar
  46. 46.
    Wang H, Xie C, Zhang W, Cai S, Yang Z, Gui Y (2007) J Hazard Mater 141:645CrossRefPubMedGoogle Scholar
  47. 47.
    Weng CH, Pan YF (2006) Colloids Surf A 274:154CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • G. D. Mihai
    • 1
    • 2
  • V. Meynen
    • 2
  • M. Mertens
    • 3
  • N. Bilba
    • 1
  • P. Cool
    • 2
  • E. F. Vansant
    • 2
  1. 1.Materials Chemistry Laboratory, Faculty of Chemistry“Al. I. Cuza” University of IasiIasiRomania
  2. 2.Laboratory of Adsorption and CatalysisUniversity of Antwerpen (CDE)AntwerpenBelgium
  3. 3.VITO Flemish Institute for Technological ResearchAntwerpBelgium

Personalised recommendations