Advertisement

Journal of Materials Science

, Volume 45, Issue 23, pp 6374–6378 | Cite as

Bioinspired peptide nanotubes as supercapacitor electrodes

  • P. Beker
  • I. Koren
  • N. Amdursky
  • E. Gazit
  • G. Rosenman
IMEC 2009

Abstract

Bioinspired materials offer new routes in nanotechnology. These materials are composed from chemically synthesized biomolecules and inspired by natural biological structures. They are self assembled into highly ordered nanostructures (nanotubes, nanospheres, etc.) from elementary building blocks of biological origin such as peptide and proteins. We developed a new technique of physical vapor deposition of peptide nanotubes (PNT) and applied it to electrochemical energy storage devices—supercapacitors (SC). In this work, aligned and homogenously distributed diphenylalanine PNT have been used to modify carbon electrodes for SC devices. Electrochemical properties of PNT coatings of different density and height, modifying carbon electrodes have been studied. We have found that aligned PNT arrays significantly increase the double layer capacitance of the carbon electrodes. The found enlargement of the PNT-modified electrode capacitance has been ascribed to increasing of usable electrode surface area of the carbon electrodes coated by PNT. We show that the critical factor of the accumulation process of the electrolyte ions at the PNT-modified electrode surface is a wetting process of the PNT nanoscale hydrophilic channels by aqueous electrolyte.

Keywords

Double Layer Capacitance Double Layer Capacitor Electrode Surface Area Physical Vapor Deposition Technique Diphenylalanine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kasemo B (2002) Surf Sci 500:656CrossRefADSGoogle Scholar
  2. 2.
    Smith RG, D’Souza N, Nicklin S (2008) Analyst 133:571CrossRefADSPubMedGoogle Scholar
  3. 3.
    Berggren M, Richter-Dahlfors A (2007) Adv Mater 19:3201CrossRefGoogle Scholar
  4. 4.
    Ma PX (2008) Adv Drug Deliv Rev 60:184CrossRefPubMedGoogle Scholar
  5. 5.
    Munch E, Launey ME, Alsem DH, Saiz E, Tomsia AP, Ritchie RO (2008) Science 322:1516CrossRefADSPubMedGoogle Scholar
  6. 6.
    Tamerler C, Sarikaya M (2007) Acta Biomater 3:289CrossRefPubMedGoogle Scholar
  7. 7.
    Semino CE (2008) J Dent Res 87:606CrossRefPubMedGoogle Scholar
  8. 8.
    Reches M, Gazit E (2003) Science 300:625CrossRefADSPubMedGoogle Scholar
  9. 9.
    Reches M, Gazit E (2006) Nat Nanotechnol 1:195CrossRefADSPubMedGoogle Scholar
  10. 10.
    Adler-Abramovich L, Aronov D, Beker P et al (2009) Nat Nanotechnol 4:849CrossRefADSPubMedGoogle Scholar
  11. 11.
    Gazit E, Adler-Abramovich L, Aronov D, Rosenman G (2007) U.S. Provisional Patent, 60/960,066Google Scholar
  12. 12.
    Amdursky N, Beker P, Schklovsky J, Gazit E, Rosenman G (2009) Ferroelectricity (in press)Google Scholar
  13. 13.
    Kholkin A, Amdursky N, Bdikin I, Gazit E, Rosenman G (2009) ACS Nano 4:610Google Scholar
  14. 14.
    Amdursky N, Molotskii M, Aronov D, Adler-Abramovich L, Gazit E, Rosenman G (2009) Nano Lett 9:3111CrossRefADSPubMedGoogle Scholar
  15. 15.
    Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nat Mater 4:366CrossRefADSPubMedGoogle Scholar
  16. 16.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  17. 17.
    Simon P, Gogotsi Y (2008) Nat Mater 7:845CrossRefADSPubMedGoogle Scholar
  18. 18.
    Frackowiak E, Beguin F (2001) Carbon 39:937CrossRefGoogle Scholar
  19. 19.
    Pandolfo AG, Hollenkamp AF (2006) J Power Sources 157:11CrossRefGoogle Scholar
  20. 20.
    Simon P, Burke A (2008) Electrochem Soc Interface 17:38Google Scholar
  21. 21.
    Fang B, Wey YZ, Kumagai M (2006) J Power Sources 155:487Google Scholar
  22. 22.
    Fowkes FM, Harkins WD (1940) J Am Chem Soc 62:3377CrossRefGoogle Scholar
  23. 23.
    Kotz R, Carlen M (2000) Electrochim Acta 45:2483CrossRefGoogle Scholar
  24. 24.
    Yemini M, Reches M, Rishpon J, Gazit E (2005) Nano Lett 5:183CrossRefADSPubMedGoogle Scholar
  25. 25.
    Gorbitz CH (2006) Chem Commun 2332Google Scholar
  26. 26.
    Gorbitz CH (2001) Chem Eur J 7:5153CrossRefGoogle Scholar
  27. 27.
    Gorbitz CH (2007) Chem Eur J 13:1022CrossRefGoogle Scholar
  28. 28.
    Joshi KB, Verma S (2008) Tetrahedron Lett 49:4231CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • P. Beker
    • 1
  • I. Koren
    • 1
  • N. Amdursky
    • 1
    • 2
  • E. Gazit
    • 2
  • G. Rosenman
    • 1
  1. 1.The Iby and Aladar Fleischman Faculty of Engineering, Department of Physical Electronics, School of Electrical EngineeringTel Aviv UniversityTel AvivIsrael
  2. 2.George S. Wise Faculty of Life Sciences, Department of Molecular Microbiology and BiotechnologyTel Aviv UniversityTel AvivIsrael

Personalised recommendations