Journal of Materials Science

, Volume 45, Issue 20, pp 5522–5527 | Cite as

Analysis of Garofalo equation parameters for an ultrahigh carbon steel

  • Jesús Castellanos
  • Ignacio Rieiro
  • Manuel Carsí
  • Oscar A. Ruano


Isothermal stress–strain curves data from torsion tests conducted at high temperature (950–1200 °C) and strain rates (2–26 s−1) were analyzed in an ultrahigh carbon steel (UHCS) containing 1.3%C. The sine hyperbolic Garofalo equation was selected as an adequate constitutive equation for the entire range of the forming variables considered. The Garofalo parameters were assumed strain dependent allowing the prediction of stress–strain curves under transient and steady-state conditions. The average relative errors obtained were below 3% in stress. In addition, the creep deformation mechanisms in the UHCS were analyzed from the Garofalo equation parameters. For this aim, the stress exponent of the Garofalo equation was, for the first time, related to that of the power law equation. The results show that the controlled deformation mechanism at steady state is lattice diffusion-controlled slip creep.


Creep Behavior Stress Exponent Average Relative Error Torsion Test Adiabatic Heating 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was carried out through the Project PBC-05-010-1 from JCCM (Castilla-La Mancha, Spain) and MAT 2009/14385.


  1. 1.
    Fernández-Vicente A, Carsí M, Peñalba F, Carreño F, Ruano OA (2003) Z Metallkd 94:922Google Scholar
  2. 2.
    McQueen HJ, Kassner ME (2005) Mater Sci Eng A 410–411:58Google Scholar
  3. 3.
    Spigarelli S, Cabibbo M, Evangelista E, Bidulska J (2003) J Mater Sci 38:81. doi: 10.1023/A:1021161715742 CrossRefGoogle Scholar
  4. 4.
    Kassner ME, Pérez-Prado MT (2000) Prog Mater Sci 45:1CrossRefGoogle Scholar
  5. 5.
    Slooff FA, Zhou J, Duszczyk J, Katgerman L (2008) J Mater Sci 43:7165. doi: 10.1007/s10853-008-3014-2 CrossRefADSGoogle Scholar
  6. 6.
    McQueen HJ, Ryan ND (2002) Mater Sci Eng A 322:43CrossRefGoogle Scholar
  7. 7.
    Abu-Haiba MS, Fatemi A, Zorouf M (2002) J Mater Sci 37:2899. doi: 10.1023/A:1016044325742 CrossRefGoogle Scholar
  8. 8.
    Rieiro I, Gutiérrez V, Castellanos J, Muñoz J, Carsí M, Larrea MT, Ruano OA (2010) Metall Mater Trans A. doi: 10.1007/s11661-010-0259-6
  9. 9.
    Mandal S, Rakesh V, Sivaprasad PV, Venugopal S, Kasiviswanathan KV (2009) Mater Sci Eng A 500:114CrossRefGoogle Scholar
  10. 10.
    Lin YC, Cheng MS, Zhang J (2009) Mater Sci Eng A 499:88CrossRefGoogle Scholar
  11. 11.
    Hu HE, Zhen L, Yang L, Shao WZ, Zhang BY (2008) Mater Sci Eng A 488:64CrossRefGoogle Scholar
  12. 12.
    Castellanos J, Rieiro I, El Mehtedi M, Carsí M, Muñoz J, Ruano OA (2009) Int J Mater Res (accepted)Google Scholar
  13. 13.
    Castellanos J, Rieiro I, El Mehtedi M, Carsí M, Muñoz J, Ruano OA (2009) Mater Sci Eng A 517:191CrossRefGoogle Scholar
  14. 14.
    Cho S-H, Yoo Y-C (2001) J Mater Sci 36:4267. doi: 10.1023/A:1017949812425 CrossRefGoogle Scholar
  15. 15.
    Dehghan-Manshadi A, Hodgson PD (2008) J Mater Sci 43:6272. doi: 10.1007/s10853-008-2907-4 CrossRefADSGoogle Scholar
  16. 16.
    Taylor GI, Quinney MA (1934) Proc R Soc Lond A143:307ADSGoogle Scholar
  17. 17.
    Hinesley HI, Conrad H (1973) Mater Sci Eng 12:47CrossRefGoogle Scholar
  18. 18.
    Rieiro I, Carsí M, Ruano OA (2009) Mater Sci Technol 25:995CrossRefGoogle Scholar
  19. 19.
    Reddy NS, Lee YH, Park CH, Lee CS (2008) Mater Sci Eng A 492:276CrossRefGoogle Scholar
  20. 20.
    He X, Yu Z, Lai X (2008) Compos Mater Sci 44:760CrossRefGoogle Scholar
  21. 21.
    Rieiro I (1997) Ph.D. Thesis, Universidad Complutense de Madrid, Madrid (Spain)Google Scholar
  22. 22.
    Mead HW, Birchenall CE (1956) Trans AIME 68:1336Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jesús Castellanos
    • 1
  • Ignacio Rieiro
    • 1
  • Manuel Carsí
    • 2
  • Oscar A. Ruano
    • 2
  1. 1.Department of MathematicsUniversidad de Castilla-La ManchaToledoSpain
  2. 2.Department of Physical MetallurgyCentro Nacional de Investigaciones Metalúrgicas, CENIM, CSICMadridSpain

Personalised recommendations